Supplementary Information

Trichodermamides D-F, Heterocyclic Dipeptides with a Highly Functionalized 1,2oxazadecaline Core Isolated from the Endophytic Fungus *Penicillium janthinellum* HDN13-309

Meilin Zhu,^a Zhen Yang,^{c,d} Huimin Feng,^a Qi Gan,^a Qian Che,^a Tianjiao Zhu,^a Qianqun Gu,^a Bingnan Han,^{*c} and Dehai Li^{*a,b}

^aKey Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.

^bLaboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, People's Republic of China

^cDepartment of Development Technology of Marine Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China

^dResearch Center for Marine Drugs, Department of Pharmacy, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China

List of Supplementary information

Table S1. Cartesian coordinates of the four low-energy reoptimized confor	rmers of
(4S, 7R, 8R, 9S)-1 calculated at B3LYP/6-31+G(d) level of theory with PCM	l solvent
model for MeOH	S3
Figure S1. The HPLC-UV profiles of the EtOAc extract of reculturing	HDN13-
309S9	
Figure S2. Conformations of lowest-energy conformers of (4 <i>S</i> , 7 <i>R</i> , 8 <i>R</i> , 9 <i>S</i>)-1.	
Figure S3. An extracted ion chromatogram for the [M+H] ⁺ signal of compo	ounds 1-
6	S10
Figure S4. ¹ H NMR spectrum of trichodermamide D (1) in d_6 -DMSO	S11
Figure S5. ¹³ C NMR spectrum of trichodermamide D (1) in d_6 -DMSO	S11
Figure S6. ¹ H- ¹ H COSY spectrum of trichodermamide D (1) in d_6 -DMSO	S12
Figure S7. HSQC spectrum of trichodermamide D (1) in d_6 -DMSO	S12
Figure S8. HMBC spectrum of trichodermamide D (1) in d_6 -DMSO	S13
Figure S9. NOESY spectrum of trichodermamide D (1) in d_6 -DMSO	S13
Figure S10. HRESIMS spectrum of trichodermamide D (1) in d_6 -DMSO	S14
Figure S11. ¹ H NMR spectrum of trichodermamide E (2) in d_6 -DMSO	S14
Figure S12. ¹³ C NMR spectrum of trichodermamide E (2) in d_6 -DMSO	S15
Figure S13. ¹ H- ¹ H COSY spectrum of trichodermamide E (2) in d_6 -DMSO	S15
Figure S14. HSQC spectrum of trichodermamide $E(2)$ in d_6 -DMSO	S16
Figure S15. HMBC spectrum of trichodermamide $E(2)$ in d_6 -DMSO	S16
Figure S16. NOESY spectrum of trichodermamide E (2) in d_6 -DMSO	S17
Figure S17. HRESIMS spectrum of trichodermamide E (2) in d_6 -DMSO	S17
Figure S18. ¹ H NMR spectrum of trichodermamide F (3) in d_6 -DMSO	S18
Figure S19. ¹³ C NMR spectrum of trichodermamide F (3) in d_6 -DMSO	S18
Figure S20. ¹ H- ¹ H COSY spectrum of trichodermamide F (3) in d_6 -DMSO	S19
Figure S21. HSQC spectrum of trichodermamide F (3) in d_6 -DMSO	S19
Figure S22. HMBC spectrum of trichodermamide F (3) in d_6 -DMSO	S20
Figure S23. HRESIMS spectrum of trichodermamide F (3) in d_6 -DMSO	S20

Conformer 1a		Standa	rd Orientation	
		(A	ingstroms)	
Ι	Atom	Х	Y	Z
1	С	-6.84467	-1.43171	-0.44619
2	С	-6.83425	-0.1373	-1.21917
3	С	-5.47881	0.58107	-1.09149
4	С	-5.02953	0.57606	0.37339
5	С	-4.78283	-0.84975	0.88354
6	С	-5.9368	-1.74391	0.48595
7	Ο	-3.88433	1.45424	0.55978
8	Ν	-2.59968	0.96177	0.42601
9	С	-2.40251	-0.30263	0.32645
10	С	-3.45401	-1.37367	0.31943
11	С	-0.96225	-0.73676	0.18748
12	Ν	-0.0432	0.26866	0.20736
13	Ο	-0.68499	-1.93274	0.06266
14	С	1.34561	0.16504	0.09576
15	С	2.01107	1.46839	0.16411
16	О	3.37253	1.49036	0.06612
17	С	4.12704	0.35314	-0.09196
18	С	3.50723	-0.90974	-0.16073
19	С	2.07808	-0.9769	-0.06143
20	О	1.42361	2.53281	0.3033
21	С	5.51078	0.5165	-0.18335
22	С	6.31251	-0.63335	-0.35264
23	С	5.71317	-1.90671	-0.41533
24	С	4.33381	-2.03712	-0.32222
25	Ο	6.05595	1.77282	-0.18497
26	Ο	7.64513	-0.40628	-0.45001
27	С	8.52689	-1.5223	-0.62755
28	С	6.65343	2.18554	1.06149
29	Ο	-5.6617	1.9052	-1.58538
30	0	-7.90029	0.68142	-0.71387
31	0	-4.60924	-0.84381	2.30953
32	Н	-7.6527	-2.12384	-0.67184
33	Н	-7.01638	-0.34003	-2.28421
34	Н	-4.7442	0.05347	-1.7154
35	Н	-5 79909	1 06374	0 97783

Table S1. Cartesian coordinates of the four low-energy reoptimized conformers of (4S, 7R, 8R, 9S)-1 calculated at B3LYP/6-31+G(d) level of theory with PCM solvent model for MeOH.

36	Н	-5.98499	-2.69448	1.0146
37	Н	-3.58607	-1.74336	-0.70415
38	Н	-3.1154	-2.22653	0.91398
39	Н	-0.40029	1.21579	0.31566
40	Н	1.58355	-1.93849	-0.11205
41	Н	6.32325	-2.79283	-0.54289
42	Н	3.88018	-3.02252	-0.37583
43	Н	9.52792	-1.09399	-0.68049
44	Н	8.30264	-2.05326	-1.559
45	Н	8.46352	-2.21019	0.22256
46	Н	7.03735	3.19257	0.8897
47	Н	5.89948	2.20644	1.85644
48	Н	7.47392	1.51614	1.33765
49	Н	-4.86263	2.42282	-1.38752
50	Н	-7.81745	1.55002	-1.14727
51	Н	-5.42952	-0.53017	2.72816

Conforman 1h		Standa	ard Orientation	
		(Å	angstroms)	
Ι	Atom	Х	Y	Ζ
1	С	-6.84008	-1.33346	-0.71424
2	С	-6.82092	0.06827	-1.26896
3	С	-5.46601	0.75232	-1.0148
4	С	-5.03169	0.51249	0.43489
5	С	-4.79177	-0.97688	0.713
6	С	-5.94191	-1.79333	0.16479
7	О	-3.88752	1.34731	0.77004
8	Ν	-2.60121	0.87696	0.58345
9	С	-2.40328	-0.35627	0.2878
10	С	-3.45591	-1.40757	0.08949
11	С	-0.96086	-0.76933	0.11215
12	Ν	-0.04158	0.21686	0.30788
13	Ο	-0.68212	-1.9323	-0.19212
14	С	1.34959	0.12406	0.21735
15	С	2.01562	1.39603	0.50848
16	Ο	3.3795	1.42392	0.45426
17	С	4.13545	0.32091	0.13936
18	С	3.51516	-0.91047	-0.14779
19	С	2.08365	-0.98313	-0.1
20	Ο	1.42665	2.42959	0.79531
21	С	5.52216	0.4843	0.12486
22	С	6.32661	-0.63253	-0.18956
23	С	5.72566	-1.87064	-0.48989

24	С	4.34349	-2.00254	-0.46639
25	О	6.07659	1.6836	0.48498
26	О	7.66394	-0.41258	-0.17064
27	С	8.5487	-1.4982	-0.47612
28	С	6.52761	2.50663	-0.61039
29	О	-5.64113	2.13914	-1.29279
30	О	-7.89029	0.79879	-0.64866
31	О	-4.63543	-1.20006	2.12363
32	Н	-7.64596	-1.97874	-1.05648
33	Н	-6.99311	0.03956	-2.35439
34	Н	-4.72621	0.32819	-1.70742
35	Н	-5.80728	0.89946	1.1016
36	Н	-5.99567	-2.8165	0.53305
37	Н	-3.573	-1.60348	-0.98288
38	Н	-3.12771	-2.34783	0.54072
39	Н	-0.40022	1.13656	0.55661
40	Н	1.58845	-1.92112	-0.3161
41	Н	6.33746	-2.73034	-0.735
42	Н	3.8892	-2.96231	-0.69472
43	Н	9.55346	-1.0828	-0.39744
44	Н	8.37945	-1.8663	-1.49383
45	Н	8.42908	-2.31464	0.24431
46	Н	6.94018	3.40896	-0.15586
47	Н	7.30248	1.99228	-1.18706
48	Н	5.68565	2.77031	-1.26033
49	Н	-4.8478	2.61675	-0.99582
50	Н	-7.79778	1.72645	-0.93175
51	Н	-5.46017	-0.95432	2.57719

Conformer 1c		Standa (Å	ard Orientation	
	Atom	X	Y	Z
1	С	-6.79011	-1.43287	-0.52325
2	С	-6.72617	-0.1553	-1.32223
3	С	-5.38741	0.57603	-1.11207
4	С	-5.0386	0.58555	0.37868
5	С	-4.8209	-0.83069	0.91971
6	С	-5.95601	-1.72453	0.48031
7	О	-3.90062	1.45746	0.64172
8	Ν	-2.61015	0.96754	0.49676
9	С	-2.41512	-0.29799	0.39917
10	С	-3.46772	-1.36976	0.40878
11	С	-0.97494	-0.73531	0.25105

12	N	-0.05607	0.2694	0.25279
13	0	-0.70193	-1.93272	0.13498
14	С	1.33184	0.16395	0.12777
15	С	1.99886	1.46681	0.18619
16	Ο	3.35908	1.4873	0.07329
17	С	4.11062	0.34897	-0.09105
18	С	3.48899	-0.91362	-0.15006
19	С	2.06108	-0.97922	-0.03482
20	О	1.41351	2.53183	0.32958
21	С	5.49329	0.51084	-0.19865
22	С	6.292	-0.64015	-0.37496
23	С	5.69084	-1.91315	-0.42822
24	С	4.3126	-2.04211	-0.31884
25	О	6.03968	1.7665	-0.20906
26	О	7.62341	-0.4144	-0.48783
27	С	8.50251	-1.53132	-0.67337
28	С	6.65108	2.18146	1.02995
29	О	-5.5478	1.8942	-1.62924
30	О	-7.83067	0.66625	-0.91405
31	О	-4.84887	-0.82334	2.35614
32	Н	-7.58267	-2.1285	-0.78897
33	Н	-6.82855	-0.38139	-2.39316
34	Н	-4.61065	0.04882	-1.68269
35	Н	-5.8415	1.07252	0.93671
36	Н	-6.05022	-2.658	1.03186
37	Н	-3.56579	-1.7774	-0.60502
38	Н	-3.1421	-2.20091	1.04096
39	Н	-0.41054	1.21802	0.35729
40	Н	1.56512	-1.94047	-0.07795
41	Н	6.2986	-2.80006	-0.5612
42	Н	3.85748	-3.02717	-0.36535
43	Н	9.50308	-1.10364	-0.73837
44	Н	8.26743	-2.06373	-1.60129
45	Н	8.44829	-2.21758	0.17868
46	Н	7.03439	3.18756	0.85156
47	Н	5.90578	2.20525	1.83292
48	Н	7.47365	1.51163	1.2988
49	Н	-4.76597	2.42061	-1.39062
50	Н	-7.71691	1.52861	-1.35287
51	Н	-4.16185	-0.22276	2.69307

(Ångstroms)

Ι	Atom	Х	Y	Z
1	С	-6.75393	-1.28927	-0.87964
2	С	-6.6575	0.11579	-1.41861
3	С	-5.33085	0.78757	-1.01572
4	С	-5.0413	0.50603	0.46101
5	С	-4.84378	-0.98938	0.72707
6	С	-5.96205	-1.77318	0.08302
7	Ο	-3.91388	1.30012	0.93211
8	Ν	-2.61888	0.84308	0.7257
9	С	-2.42189	-0.38059	0.38984
10	С	-3.47305	-1.43082	0.17081
11	С	-0.97877	-0.78917	0.19458
12	Ν	-0.06086	0.19872	0.38208
13	Ο	-0.70293	-1.94985	-0.11917
14	С	1.32944	0.11051	0.26937
15	С	1.99582	1.38368	0.55327
16	Ο	3.35822	1.41661	0.4746
17	С	4.11225	0.31715	0.14293
18	С	3.49128	-0.91572	-0.13664
19	С	2.06119	-0.99335	-0.06428
20	О	1.40803	2.41388	0.85435
21	С	5.49787	0.48536	0.10461
22	С	6.30044	-0.62819	-0.2263
23	С	5.6985	-1.86755	-0.51962
24	С	4.31746	-2.0042	-0.47265
25	О	6.054	1.68568	0.45813
26	О	7.63703	-0.40403	-0.22912
27	С	8.5203	-1.48625	-0.55102
28	С	6.49079	2.50984	-0.6423
29	О	-5.47546	2.18189	-1.27256
30	О	-7.78114	0.85098	-0.91064
31	О	-4.92387	-1.25653	2.13628
32	Н	-7.53595	-1.91492	-1.30352
33	Н	-6.71232	0.09712	-2.51646
34	Н	-4.5293	0.37934	-1.64623
35	Н	-5.86511	0.88243	1.07155
36	Н	-6.08004	-2.79339	0.44319
37	Н	-3.53738	-1.64849	-0.90247
38	Н	-3.16654	-2.36424	0.65189
39	Н	-0.41754	1.11658	0.64051
40	Н	1.56547	-1.93229	-0.27507
41	Н	6.30885	-2.72452	-0.77748
42	Н	3.86248	-2.96489	-0.69565
43	Н	9.52481	-1.06761	-0.48807

44	Н	8.3356	-1.85313	-1.56644
45	Н	8.41506	-2.30424	0.16987
46	Н	6.90649	3.41298	-0.19228
47	Н	7.26014	1.99726	-1.22779
48	Н	5.64086	2.77175	-1.2825
49	Н	-4.70769	2.64903	-0.90159
50	Н	-7.6503	1.78051	-1.17149
51	Н	-4.25278	-0.73138	2.6054

Figure S1. The HPLC-UV profiles of the EtOAc extract of reculturing HDN13-309.

Figure S2. Conformations of lowest-energy conformers (>5% population) of (4*S*, 7*R*, 8*R*, 9*S*)-1.

Figure S3. An extracted ion chromatogram for the [M+H]⁺ signal of compounds **1-6** in the fresh CH₃CN extract of *P. janthinellum* HDN13-309.

Figure S4. ¹H NMR spectrum of trichodermamide D (1) in d_6 -DMSO (500 MHz)

Figure S5. ¹³C NMR spectrum of trichodermamide D (1) in d_6 -DMSO (125 MHz)

Figure S6. ¹H-¹H COSY spectrum of trichodermamide D (1)

Figure S7. HSQC spectrum of trichodermamide D (1)

Figure S8. HMBC spectrum of trichodermamide D (1)

Figure S9. NOESY spectrum of trichodermamide D (1)

Figure S10. HRESIMS spectrum of trichodermamide D (1)

Figure S11. ¹H NMR spectrum of trichodermamide E (2) in d_6 -DMSO (500 MHz)

Figure S12. ¹³C NMR spectrum of trichodermamide E (2) in d_6 -DMSO (125 MHz)

Figure S13. ¹H⁻¹H COSY spectrum of trichodermamide E (2)

Figure S14. HSQC spectrum of trichodermamide E (2)

Figure S15. HMBC spectrum of trichodermamide E (2)

Figure S17. HRESIMS spectrum of trichodermamide E (2)

Figure S18. ¹H NMR spectrum of trichodermamide F (3) in d_6 -DMSO (500 MHz)

Figure S19. ¹³C NMR spectrum of trichodermamide F (**3**) in d_6 -DMSO (125 MHz)

Figure S20. ¹H-¹H COSY spectrum of trichodermamide F (**3**)

Figure S21. HSQC spectrum of trichodermamide F (3)

Figure S22. HMBC spectrum of trichodermamide F (3)

Figure S23. HRESIMS spectrum of trichodermamide F (3)

