Supporting Information

Electrochromism and electrochemical properties of complexes of transition metal ions with benzimidazole-based ligand

Monika Wałęsa-Chorab, ${ }^{\text {a* }}$ Radosław Banasz, ${ }^{\text {a }}$ Damian Marcinkowski, ${ }^{\text {a,b }}$ Maciej Kubicki, ${ }^{\text {a }}$ Violetta Patroniak ${ }^{\text {a }}$
${ }^{a}$ Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61614 Poznań, Poland
${ }^{b}$ Current address: Institute of Technology and Life Sciences, Biskupińska 67, 60-463 Poznań, Poland
*Corresponding author: E-mail: mchorab@amu.edu.pl; Fax: +48 618291508; Tel: +48 618291772

Table of contents

Figure S1. Spectral changes of 1 in dehydrated and deaerated acetonitrile with $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ as a supporting electrolyte by applying $+1200(\boldsymbol{\bullet}),+1300(\bullet),+1400(\mathbf{\Delta}),+1500(\boldsymbol{\nabla})$ and $+1600 \mathrm{mV}(\bullet)$ potentials versus $\mathrm{Ag} / \mathrm{AgCl}$ gel reference electrode held for 30 s per potential. Insert: photographs of the original (left) and electrochemically oxidized (right) 1 by applying a potential for 1 min . .3
Figure S2. Spectral changes of 3 in dehydrated and deaerated acetonitrile with $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ as a supporting electrolyte by applying $0(\square),-500(\bullet),-600(\mathbf{\Delta})$ and $-700 \mathrm{mV}(\boldsymbol{\nabla})$ potentials versus $\mathrm{Ag} / \mathrm{AgCl}$ gel reference electrode held for 30 s per potential. Insert: photographs of the original (left) and electrochemically reduced (right) 3 by applying a potential for 1 min .
Figure S3. Spectral changes of 4 in dehydrated and deaerated acetonitrile with $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ as a supporting electrolyte by applying $0(\boldsymbol{\square}),-500(\bullet),-600(\mathbf{A}),-700(\boldsymbol{V})$ and $-800 \mathrm{mV}(\diamond)$ potentials versus $\mathrm{Ag} / \mathrm{AgCl}$ gel reference electrode held for 30 s per potential. Insert: photographs of the original (left) and electrochemically reduced (right) 4 by applying a potential for 1 min. . .4
Figure S4. Spectral changes of 5 in dehydrated and deaerated acetonitrile with $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ as a supporting electrolyte by applying $+400(\boldsymbol{\square}),+500(\bullet),+600(\boldsymbol{\Delta}),+700(\boldsymbol{\nabla}),+800(*),+1000(\$)$, $+1100(\circ),+1200(\square)$ and $+1300 \mathrm{mV}(\Delta)$ potentials versus $\mathrm{Ag} / \mathrm{AgCl}$ gel reference electrode held for 30 s per potential. Insert: photographs of the original (left) and electrochemically oxidized (right) 5 by applying a potential for 1 min . .4
Figure S5. The cyclic voltammogram ($2^{\text {nd }}$ cycle) of Mn (II) complex 6 measured in anhydrous and deaerated acetonitrile with $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ as a supporting electrolyte at a scan rate $100 \mathrm{mV} / \mathrm{s}$ scanned in the negative direction.5
Figure S11. Changes in transmittance of $\mathrm{Cu}(\mathrm{II})$ complex 2 measured in anhydrous and deaerated acetonitrile with $0.1 \mathrm{M} \mathrm{TBAPF}{ }_{6}$ as a supporting electrolyte and monitored at 420 nm when switching between -400 mV and +200 mV potential at 60 s cycles. 5
Figure S12. Changes in transmittance of Cu (II) complex 3 measured in anhydrous and deaerated acetonitrile with $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ as a supporting electrolyte and monitored at 400 nm when switching between -700 mV and +300 mV potential at 60 s cycles.6
Figure S13. Changes in transmittance of Cu (II) complex 4 measured in anhydrous and deaerated acetonitrile with $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ as a supporting electrolyte and monitored at 400 nm when switching between -800 mV and +200 mV potential at 60 s cycles.6
Figure S9. Changes in transmittance of Co(II) complex 5 measured in anhydrous and deaerated acetonitrile with $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ as a supporting electrolyte and monitored at 400 nm when switching between -600 mV and +400 mV potential at 60 s cycles. 7
Table S1. CIE coordinates with D65 illuminat and 2° observer angle for the different states of ligand L and its complexes 1-5 in different states.8
Table S2. Crystal data, data collection and structure refinement. 9

Figure S1. Spectral changes of 1 in dehydrated and deaerated acetonitrile with 0.1 M TBAPF 6 as a supporting electrolyte by applying $+1200(■),+1300(\bullet),+1400(\boldsymbol{\Delta}),+1500(\nabla)$ and $+1600 \mathrm{mV}(*)$ potentials versus $\mathrm{Ag} / \mathrm{AgCl}$ gel reference electrode held for 30 s per potential. Insert: photographs of the original (left) and electrochemically oxidized (right) 1 by applying a potential for 1 min .

Figure S2. Spectral changes of $\mathbf{3}$ in dehydrated and deaerated acetonitrile with 0.1 M TBAPF 6 as a supporting electrolyte by applying $0(\square),-500(\bullet),-600(\Delta)$ and $-700 \mathrm{mV}(\nabla)$ potentials versus $\mathrm{Ag} / \mathrm{AgCl}$ gel reference electrode held for 30 s per potential. Insert: photographs of the original (left) and electrochemically reduced (right) $\mathbf{3}$ by applying a potential for 1 min .

Figure S3. Spectral changes of 4 in dehydrated and deaerated acetonitrile with 0.1 M TBAPF $_{6}$ as a supporting electrolyte by applying $0(\boldsymbol{\square}),-500(\bullet),-600(\mathbf{~}),-700(\nabla)$ and $-800 \mathrm{mV}(*)$ potentials versus $\mathrm{Ag} / \mathrm{AgCl}$ gel reference electrode held for 30 s per potential. Insert: photographs of the original (left) and electrochemically reduced (right) 4 by applying a potential for 1 min .

Figure S4. Spectral changes of 5 in dehydrated and deaerated acetonitrile with 0.1 M TBAPF ${ }_{6}$ as a supporting electrolyte by applying $+400(\mathbf{\bullet}),+500(\bullet),+600(\mathbf{\Delta}),+700(\nabla),+800(\bullet)$, $+1000(\$),+1100(\circ),+1200(\square)$ and $+1300 \mathrm{mV}(\Delta)$ potentials versus $\mathrm{Ag} / \mathrm{AgCl}$ gel reference electrode held for 30 s per potential. Insert: photographs of the original (left) and electrochemically oxidized (right) $\mathbf{5}$ by applying a potential for 1 min .

Figure S5. The cyclic voltammogram ($2^{\text {nd }}$ cycle) of Mn (II) complex 6 measured in anhydrous and deaerated acetonitrile with $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ as a supporting electrolyte at a scan rate $100 \mathrm{mV} / \mathrm{s}$ scanned in the negative direction.

Figure S6. Changes in transmittance of $\mathrm{Cu}(I I)$ complex 2 measured in anhydrous and deaerated acetonitrile with $0.1 \mathrm{M} \mathrm{TBAPF}{ }_{6}$ as a supporting electrolyte and monitored at 420 nm when switching between -400 mV and +200 mV potential at 60 s cycles.

Figure S7. Changes in transmittance of $\mathrm{Cu}(\mathrm{II})$ complex 3 measured in anhydrous and deaerated acetonitrile with $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ as a supporting electrolyte and monitored at 400 nm when switching between -700 mV and +300 mV potential at 60 s cycles.

Figure S8. Changes in transmittance of $\mathrm{Cu}(\mathrm{II})$ complex 4 measured in anhydrous and deaerated acetonitrile with $0.1 \mathrm{M} \mathrm{TBAPF}{ }_{6}$ as a supporting electrolyte and monitored at 400 nm when switching between -800 mV and +200 mV potential at 60 s cycles.

Figure S9. Changes in transmittance of Co(II) complex 5 measured in anhydrous and deaerated acetonitrile with $0.1 \mathrm{M} \mathrm{TBAPF}_{6}$ as a supporting electrolyte and monitored at 400 nm when switching between -600 mV and +400 mV potential at 60 s cycles.

Table S1. CIE coordinates with D65 illuminat and 2° observer angle for the different states of ligand \mathbf{L} and its complexes 1-5 in different states.

Compound	L* *	a^{*}	$\mathrm{~b}^{*}$	
	Neutral	98.7	-5.5	20.1
	oxidized	98.7	-4.1	12.3
Complex 1	Neutral	80.3	28.1	-7.5
	1 $^{\text {st }}$ oxidation state	83.4	2.8	45.3
	$2^{\text {nd }}$ oxidation state	82.2	0.2	32.9
	Reduced	79.7	-19.6	33.3
Complex 2	Neutral	85.6	-6.4	26.15
	Reduced	83.8	10.0	25.4
Complex 3	Neutral	95.1	-2.7	10.2
	Reduced	93.2	5.8	9.5
Complex 4	Neutral	80.1	-7.4	30.1
	Reduced	78.8	16.2	27.4
Complex 5	Neutral	94.6	-5.2	29.9
	1 $^{\text {st }}$ oxidation state	91.6	15.1	48.5
	$2^{\text {nd }}$ oxidation state	95.0	-4.2	16.3

Table S2. Crystal data, data collection and structure refinement.

Compound	1	2	3	4	5	6
Formula	$\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{FeN}_{10}$	$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{CuF}_{6} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{~S}_{2}$	$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{CuN}_{6} \mathrm{O}_{4}{ }^{+}$	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{CuN}_{5}$	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{CoN}_{5}$	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{MnN}_{5}$
	- $2\left(\mathrm{CF}_{3} \mathrm{O}_{3} \mathrm{~S}\right) \cdot \mathrm{CH}_{3} \mathrm{CN}$.$^{-O_{3}{ }^{-}}$. $\mathrm{CH}_{3} \mathrm{OH}$. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	
Formula weight	925.68	659.04	484.92	520.72	441.22	480.08
Crystal system	monoclinic	triclinic	monoclinic	triclinic	orthorhombic	triclinic
Space group	$\mathrm{P}_{1} / \mathrm{n}$	P-1	$\mathrm{P}_{2} / \mathrm{n}$	P-1	Pbca	P-1
a(Å)	9.7491(3)	8.0767(3)	9.6735(9)	9.6841(12)	11.59108(13)	7.6305(5)
$\mathrm{b}(\mathrm{A})$	16.1976(4)	11.3717(5)	17.4644(11)	10.0927(9)	15.95415(19)	8.9863(5)
c(Å)	24.3248(6)	13.9815(8)	12.1452(13)	10.4709(9)	20.3432(3)	13.5352(8)
$\alpha(\underline{O})$	90	76.300(4)	90	91.231(7)	90	83.946(5)
$\beta(\underline{ })$	95.452(2)	82.265(4)	103.407(10)	92.328(8)	90	75.427(6)
$Y(0)$	90	85.663(3)	90	117.823(11)	90	67.854(6)
$V\left(\AA^{3}\right)$	3823.80(18)	1234.98(10)	1995.9(3)	903.40(18)	3761.98(8)	831.92(10)
Z	4	2	4	2	8	2
$\mathrm{D}_{\mathrm{x}}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.61	1.77	1.61	1.91	1.56	1.92
$\mathrm{F}(000)$	1896	666	996	514	1816	470
$\mu\left(\mathrm{mm}^{-1}\right)$	0.60	1.15	1.15	5.65	9.91	5.60
Reflections:						
collected	14830	8888	7123	5979	18640	5914
unique ($\mathrm{R}_{\text {int }}$)	7317 (0.019)	5079 (0.015)	3514 (0.021)	3675 (0.017)	3838 (0.057)	3403 (0.019)
with $1>2 \sigma(1)$	6090	4552	2618	3322	3622	3123
$R(F)$ [$1>2 \sigma(1)]$	0.050	0.027	0.055	0.028	0.050	0.025
$w R\left(F^{2}\right)[1>2 \sigma(I)]$	0.122	0.069	0.132	0.071	0.149	0.057
$R(F)$ [all data]	0.061	0.032	0.079	0.033	0.052	0.029
$w R\left(F^{2}\right)$ [all data]	0.130	0.071	0.142	0.074	0.152	0.059
Goodness of fit	1.04	1.04	1.05	1.05	1.05	1.08
$\mathrm{max} / \mathrm{min} \Delta \rho$ (e \AA^{-}	1.50/-0.84	0.39/-0.38	0.80/-0.46	0.8450/-1.02	1.68/-0.61	0.53/-0.49

