Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

## **Supporting Information**

## Electrochromism and electrochemical properties of complexes of transition metal ions with benzimidazole-based ligand

Monika Wałęsa-Chorab,<sup>a\*</sup> Radosław Banasz,<sup>a</sup> Damian Marcinkowski,<sup>a,b</sup> Maciej Kubicki,<sup>a</sup> Violetta Patroniak<sup>a</sup>

<sup>a</sup>Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61614 Poznań, Poland <sup>b</sup>Current address: Institute of Technology and Life Sciences, Biskupińska 67, 60-463 Poznań, Poland

\*Corresponding author: E-mail: mchorab@amu.edu.pl; Fax: +48 618291508; Tel: +48 618291772

## **Table of contents**

Figure S1. Spectral changes of 1 in dehydrated and deaerated acetonitrile with 0.1 M  $TBAPF_6$  as a supporting electrolyte by applying +1200 ( $\blacksquare$ ), +1300 ( $\blacklozenge$ ), +1400 ( $\blacktriangle$ ), +1500 ( $\triangledown$ ) and +1600 mV ( $\diamondsuit$ ) potentials versus Ag/AgCl gel reference electrode held for 30 s per potential. Insert: photographs of Figure S2. Spectral changes of 3 in dehydrated and deaerated acetonitrile with  $0.1 \text{ M TBAPF}_{6}$  as a supporting electrolyte by applying 0 (**■**), -500 (**●**), -600 (**▲**) and -700 mV ( $\nabla$ ) potentials versus Ag/AgCl gel reference electrode held for 30 s per potential. Insert: photographs of the original (left) Figure S3. Spectral changes of 4 in dehydrated and deaerated acetonitrile with 0.1 M TBAPF<sub>6</sub> as a supporting electrolyte by applying  $0 (\blacksquare)$ , -500 ( $\bullet$ ), -600 ( $\blacktriangle$ ), -700 ( $\triangledown$ ) and -800 mV ( $\blacklozenge$ ) potentials versus Ag/AgCl gel reference electrode held for 30 s per potential. Insert: photographs of the original Figure S4. Spectral changes of 5 in dehydrated and deaerated acetonitrile with 0.1 M TBAPF<sub>6</sub> as a supporting electrolyte by applying +400 (■), +500 (●), +600 (▲), +700 (♥), +800 (♦), +1000 (►), +1100 (0), +1200 ( $\Box$ ) and +1300 mV ( $\Delta$ ) potentials versus Ag/AgCl gel reference electrode held for 30 s per potential. Insert: photographs of the original (left) and electrochemically oxidized (right) 5 by applying a potential for 1 min. ......4 Figure S5. The cyclic voltammogram (2<sup>nd</sup> cycle) of Mn(II) complex 6 measured in anhydrous and deaerated acetonitrile with 0.1 M TBAPF<sub>6</sub> as a supporting electrolyte at a scan rate 100 mV/s scanned Figure S11. Changes in transmittance of Cu(II) complex 2 measured in anhydrous and deaerated acetonitrile with 0.1 M TBAPF<sub>6</sub> as a supporting electrolyte and monitored at 420 nm when switching between -400 mV and +200 mV potential at 60 s cycles. .....5 Figure S12. Changes in transmittance of Cu(II) complex 3 measured in anhydrous and deaerated acetonitrile with 0.1 M TBAPF<sub>6</sub> as a supporting electrolyte and monitored at 400 nm when switching between -700 mV and +300 mV potential at 60 s cycles. .....6 Figure S13. Changes in transmittance of Cu(II) complex 4 measured in anhydrous and deaerated acetonitrile with 0.1 M TBAPF<sub>6</sub> as a supporting electrolyte and monitored at 400 nm when switching between -800 mV and +200 mV potential at 60 s cycles. .....6 Figure S9. Changes in transmittance of Co(II) complex 5 measured in anhydrous and deaerated acetonitrile with 0.1 M TBAPF<sub>6</sub> as a supporting electrolyte and monitored at 400 nm when switching between -600 mV and +400 mV potential at 60 s cycles. .....7

| Table S1. CIE coordinates with D65 illuminat and 2° observer angle for the different states of ligand L | - |
|---------------------------------------------------------------------------------------------------------|---|
| and its complexes 1-5 in different states                                                               | 8 |
| Table S2. Crystal data, data collection and structure refinement                                        | 9 |



**Figure S1**. Spectral changes of **1** in dehydrated and deaerated acetonitrile with 0.1 M TBAPF<sub>6</sub> as a supporting electrolyte by applying +1200 (**•**), +1300 (**•**), +1400 (**•**), +1500 (**V**) and +1600 mV (**•**) potentials versus Ag/AgCl gel reference electrode held for 30 s per potential. Insert: photographs of the original (left) and electrochemically oxidized (right) **1** by applying a potential for 1 min.



**Figure S2.** Spectral changes of **3** in dehydrated and deaerated acetonitrile with 0.1 M TBAPF<sub>6</sub> as a supporting electrolyte by applying 0 ( $\blacksquare$ ), -500 ( $\bullet$ ), -600 ( $\blacktriangle$ ) and -700 mV ( $\bigtriangledown$ ) potentials versus Ag/AgCl gel reference electrode held for 30 s per potential. Insert: photographs of the original (left) and electrochemically reduced (right) **3** by applying a potential for 1 min.



**Figure S3.** Spectral changes of **4** in dehydrated and deaerated acetonitrile with 0.1 M TBAPF<sub>6</sub> as a supporting electrolyte by applying 0 (**•**), -500 (**•**), -600 (**4**), -700 (**V**) and -800 mV (**•**) potentials versus Ag/AgCl gel reference electrode held for 30 s per potential. Insert: photographs of the original (left) and electrochemically reduced (right) **4** by applying a potential for 1 min.



**Figure S4.** Spectral changes of **5** in dehydrated and deaerated acetonitrile with 0.1 M TBAPF<sub>6</sub> as a supporting electrolyte by applying +400 (**•**), +500 (**•**), +600 (**•**), +700 (**•**), +800 (**•**), +1000 (**•**), +1100 (**•**), +1200 (**•**) and +1300 mV ( $\Delta$ ) potentials versus Ag/AgCl gel reference electrode held for 30 s per potential. Insert: photographs of the original (left) and electrochemically oxidized (right) **5** by applying a potential for 1 min.



**Figure S5.** The cyclic voltammogram ( $2^{nd}$  cycle) of Mn(II) complex **6** measured in anhydrous and deaerated acetonitrile with 0.1 M TBAPF<sub>6</sub> as a supporting electrolyte at a scan rate 100 mV/s scanned in the negative direction.



**Figure S6.** Changes in transmittance of Cu(II) complex **2** measured in anhydrous and deaerated acetonitrile with 0.1 M TBAPF<sub>6</sub> as a supporting electrolyte and monitored at 420 nm when switching between -400 mV and +200 mV potential at 60 s cycles.



**Figure S7.** Changes in transmittance of Cu(II) complex **3** measured in anhydrous and deaerated acetonitrile with 0.1 M TBAPF<sub>6</sub> as a supporting electrolyte and monitored at 400 nm when switching between -700 mV and +300 mV potential at 60 s cycles.



**Figure S8.** Changes in transmittance of Cu(II) complex **4** measured in anhydrous and deaerated acetonitrile with 0.1 M TBAPF<sub>6</sub> as a supporting electrolyte and monitored at 400 nm when switching between -800 mV and +200 mV potential at 60 s cycles.



**Figure S9.** Changes in transmittance of Co(II) complex **5** measured in anhydrous and deaerated acetonitrile with 0.1 M TBAPF<sub>6</sub> as a supporting electrolyte and monitored at 400 nm when switching between -600 mV and +400 mV potential at 60 s cycles.

| Compound         |                                 | L*   | a*    | b*    |
|------------------|---------------------------------|------|-------|-------|
| Ligand <b>L</b>  | Neutral                         | 98.7 | -5.5  | 20.1  |
|                  | oxidized                        | 98.7 | -4.1  | 12.3  |
| Complex 1        | Neutral                         | 80.3 | 28.1  | -7.5  |
|                  | 1 <sup>st</sup> oxidation state | 83.4 | 2.8   | 45.3  |
|                  | 2 <sup>nd</sup> oxidation state | 82.2 | 0.2   | 32.9  |
|                  | Reduced                         | 79.7 | -19.6 | 33.3  |
| Complay 3        | Neutral                         | 85.6 | -6.4  | 26.15 |
| Complex Z        | Reduced                         | 83.8 | 10.0  | 25.4  |
| Complay 3        | Neutral                         | 95.1 | -2.7  | 10.2  |
| Complex 3        | Reduced                         | 93.2 | 5.8   | 9.5   |
| Complex <b>4</b> | Neutral                         | 80.1 | -7.4  | 30.1  |
|                  | Reduced                         | 78.8 | 16.2  | 27.4  |
| Complex <b>5</b> | Neutral                         | 94.6 | -5.2  | 29.9  |
|                  | 1 <sup>st</sup> oxidation state | 91.6 | 15.1  | 48.5  |
|                  | 2 <sup>nd</sup> oxidation state | 95.0 | -4.2  | 16.3  |

**Table S1.** CIE coordinates with D65 illuminat and 2° observer angle for the different states of ligand L and its complexes **1-5** in different states.

| Compound                       | 1                               | 2                            | 3                        | 4                       | 5                       | 6                       |
|--------------------------------|---------------------------------|------------------------------|--------------------------|-------------------------|-------------------------|-------------------------|
| Formula                        | $C_{30}H_{30}FeN_{10}$          | $C_{18}H_{19}CuF_6N_5O_7S_2$ | $C_{16}H_{19}CuN_6O_4^+$ | $C_{15}H_{15}Br_2CuN_5$ | $C_{15}H_{15}CI_2CoN_5$ | $C_{15}H_{15}Br_2MnN_5$ |
|                                | $\cdot 2(CF_3O_3S)\cdot CH_3CN$ |                              | ·NO <sub>3</sub> -       | ·CH₃OH                  | $\cdot C_2H_5OH$        |                         |
| Formula weight                 | 925.68                          | 659.04                       | 484.92                   | 520.72                  | 441.22                  | 480.08                  |
| Crystal system                 | monoclinic                      | triclinic                    | monoclinic               | triclinic               | orthorhombic            | triclinic               |
| Space group                    | P2 <sub>1</sub> /n              | P-1                          | P2 <sub>1</sub> /n       | P-1                     | Pbca                    | P-1                     |
| a(Å)                           | 9.7491(3)                       | 8.0767(3)                    | 9.6735(9)                | 9.6841(12)              | 11.59108(13)            | 7.6305(5)               |
| b(Å)                           | 16.1976(4)                      | 11.3717(5)                   | 17.4644(11)              | 10.0927(9)              | 15.95415(19)            | 8.9863(5)               |
| c(Å)                           | 24.3248(6)                      | 13.9815(8)                   | 12.1452(13)              | 10.4709(9)              | 20.3432(3)              | 13.5352(8)              |
| α(º)                           | 90                              | 76.300(4)                    | 90                       | 91.231(7)               | 90                      | 83.946(5)               |
| β( <b>≌</b> )                  | 95.452(2)                       | 82.265(4)                    | 103.407(10)              | 92.328(8)               | 90                      | 75.427(6)               |
| γ(°)                           | 90                              | 85.663(3)                    | 90                       | 117.823(11)             | 90                      | 67.854(6)               |
| V(ų)                           | 3823.80(18)                     | 1234.98(10)                  | 1995.9(3)                | 903.40(18)              | 3761.98(8)              | 831.92(10)              |
| Z                              | 4                               | 2                            | 4                        | 2                       | 8                       | 2                       |
| D <sub>x</sub> (g cm⁻³)        | 1.61                            | 1.77                         | 1.61                     | 1.91                    | 1.56                    | 1.92                    |
| F(000)                         | 1896                            | 666                          | 996                      | 514                     | 1816                    | 470                     |
| μ(mm⁻¹)                        | 0.60                            | 1.15                         | 1.15                     | 5.65                    | 9.91                    | 5.60                    |
| Reflections:                   |                                 |                              |                          |                         |                         |                         |
| collected                      | 14830                           | 8888                         | 7123                     | 5979                    | 18640                   | 5914                    |
| unique (R <sub>int</sub> )     | 7317 (0.019)                    | 5079 (0.015)                 | 3514 (0.021)             | 3675 (0.017)            | 3838 (0.057)            | 3403 (0.019)            |
| with I>2σ(I)                   | 6090                            | 4552                         | 2618                     | 3322                    | 3622                    | 3123                    |
| R(F) [I>2σ(I)]                 | 0.050                           | 0.027                        | 0.055                    | 0.028                   | 0.050                   | 0.025                   |
| wR(F <sup>2</sup> ) [I>2σ(I)]  | 0.122                           | 0.069                        | 0.132                    | 0.071                   | 0.149                   | 0.057                   |
| R(F) [all data]                | 0.061                           | 0.032                        | 0.079                    | 0.033                   | 0.052                   | 0.029                   |
| wR(F <sup>2</sup> ) [all data] | 0.130                           | 0.071                        | 0.142                    | 0.074                   | 0.152                   | 0.059                   |
| Goodness of fit                | 1.04                            | 1.04                         | 1.05                     | 1.05                    | 1.05                    | 1.08                    |
| max/min ∆ρ (e Å⁻               | 1.50/-0.84                      | 0.39/-0.38                   | 0.80/-0.46               | 0.8450/-1.02            | 1.68/-0.61              | 0.53/-0.49              |

 Table S2. Crystal data, data collection and structure refinement.