Naphthoquinone based chemosensors for transition metal ions: Experiment and Theory

Prajkta Gosavi-Mirkute1^a, Amit Patil1^a, Dipali N. Lande^a, Debamitra Chakravarty^b, Shridhar P. Gejji^a, Surekha Satpute^c, Sunita Salunke-Gawali^{*a}

Supplementary Material

Fig. S-1 a) FT-IR spectrum of H-1 in region 4000 cm⁻¹ to 400 cm^{-1} .

Fig. S-1 b) FT-IR spectrum of H-2 in region 4000 cm⁻¹ to 400 cm⁻¹

Fig. S-1 c) FT-IR spectrum of H-3 in region 4000 cm⁻¹ to 400 cm⁻¹

Fig. S-1 d) FT-IR spectrum of H-4 in region 4000 cm⁻¹ to 400 cm⁻¹

Fig. S2 a) ¹H and b) ¹³C NMR spectra of H-1 in DMSO- d_6 solvent.

Fig.S4 a) ¹H and b) ¹³C NMR spectra of H-3 in DMSO- d_6 .

Fig. S5 a) ¹H and b) ¹³C NMR spectra of **H-4** in DMSO- d_6 solvent.

9

Fig. S6 DSC plot of H-1, H-2, H-3 and H-4

Fig. S7 Figure showing planarity of naphthoquinone and pyridyl ring of chemosensor H-1

Fig. S8 Figure showing planarity of naphthoquinone and pyridyl ring of H-3 (a) and H-4 (b)

Fig. S9 a) UV-Visible spectra of H-3 in presence of various metal ions in methanol. b) UV-Visible spectra of H-3 in presence of various metal ions in methanol-triethylamine. c) UV-Visible spectra of H-3 in presence of various metal ions in methanol: water media. d) UV-Visual spectra of H-3 in presence of various metal ions in methanol-TEA-water

Fig. S10 Job's plot experiment for H-1 and Cu²⁺, Cu⁺, Ni²⁺, Co²⁺ and Zn²⁺ in methanol.

 Zn^{2+}

Fig. S11 Job's plot experiment for H-1 and Zn^{2+} , Ni²⁺and Co²⁺in methanol + TEA mixture.

Fig S12 Job's plot experiment for H-1 and Cu²⁺ in methanol: water mixture

Fig. S13 a) Association constant experiment of Cu²⁺ in methanol with H-1

Fig. S13 b) Association constant experiment of Ni²⁺ in methanol with H-1

Ni²⁺

Fig.S14 Job's plot experiment for H-3 and Cu^{2+} and Ni^{2+} in methanol.

Fig. S15 Job's plot experiment for H-3 and Cu²⁺, Ni²⁺ and Co²⁺ in methanol:triethylamine

Fig.S16 Job's plot experiment for H-3 and Cu²⁺and Cu⁺ in methanol :water.

Fig. S17 a) Cu²⁺ in methanol association constant graph for H-3

Fig. S17 b) Cu⁺ in methanol association constant graph for H-3.

Fig. S18 Color changes observed to Chemosensor H-3 and metal ions (1×10⁻⁴ M) in methanol

Fig. S19 (a)UV-visible of competitive binding of selected metal ions with chemosensor H-1 in methanol. b) UV-visible of competitive binding of selected metal ions with chemosensor H-3 in methanol.

Fig.S20 pH dependent binding studies for metal ions Zn^{2+} , Cu^{2+} and Ni^{2+} of ligands a) H-1 and b) H-3.

Fig. S21 a) Fluorescence spectra of H-1 with an increasing concentration of Cu^{2+} b) plot of the intensity at 462 nm for mixture of the H-1 and Cu^{2+} in methanol.

Fig.S22 a) Fluorescence spectra of H-3 with an increasing concentration of Cu^{2+} b) plot of the intensity at 462 nm for mixture of the H-3 and Cu^{2+} in methanol.

	х	у	Z	U(eq)
O(1)	7394(1)	2411(1)	1286(1)	18(1)
O(2)	-552(1)	-987(1)	1100(1)	21(1)
N(1)	5129(2)	2262(1)	348(1)	14(1)
N(2)	7423(2)	3942(1)	-325(1)	15(1)
C(1)	5682(2)	1543(1)	1246(1)	13(1)
C(2)	4232(2)	1457(1)	738(1)	13(1)
C(3)	2166(2)	627(1)	702(1)	15(1)
C(4)	1326(2)	-257(1)	1132(1)	14(1)
C(5)	2128(2)	-1236(1)	2044(1)	16(1)
C(6)	3545(2)	-1334(1)	2501(1)	19(1)
C(7)	5642(2)	-484(1)	2552(1)	20(1)
C(8)	6321(2)	472(1)	2146(1)	17(1)
C(9)	4916(2)	558(1)	1684(1)	13(1)
C(10)	2814(2)	-299(1)	1631(1)	13(1)
C(11)	3973(2)	2359(1)	-167(1)	14(1)
C(12)	5417(2)	3325(1)	-528(1)	13(1)
C(13)	4634(2)	3536(1)	-1048(1)	15(1)
C(14)	6012(2)	4421(1)	-1368(1)	15(1)
C(15)	8097(2)	5071(1)	-1163(1)	15(1)
C(16)	8724(2)	4801(1)	-642(1)	16(1)

Table S1 Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for H-1. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(1)	1.2196(13)
O(2)-C(4)	1.2342(13)
N(1)-C(2)	1.3354(13)
N(1)-C(11)	1.4455(13)
N(1)-H(1)	0.8800
N(2)-C(12)	1.3359(13)
N(2)-C(16)	1.3442(14)
C(1)-C(9)	1.4841(14)
C(1)-C(2)	1.5066(14)
C(2)-C(3)	1.3694(14)
C(3)-C(4)	1.4363(15)
C(3)-H(3)	0.9500
C(4)-C(10)	1.4994(15)
C(5)-C(6)	1.3894(16)
C(5)-C(10)	1.3948(15)
C(5)-H(5)	0.9500
C(6)-C(7)	1.3943(16)
C(6)-H(6)	0.9500
C(7)-C(8)	1.3882(16)
C(7)-H(7)	0.9500
C(8)-C(9)	1.3975(15)
C(8)-H(8)	0.9500
C(9)-C(10)	1.3999(14)
C(11)-C(12)	1.5120(14)
C(11)-H(11A)	0.9900
C(11)-H(11B)	0.9900
C(12)-C(13)	1.3960(14)
C(13)-C(14)	1.3870(15)
С(13)-Н(13)	0.9500
C(14)-C(15)	1.3873(15)
C(14)-H(14)	0.9500
C(15)-C(16)	1.3842(15)
C(15)-H(15)	0.9500
C(16)-H(16)	0.9500

Table S2 Bond lengths [Å] and angles [°] for H-1.

C(2)-N(1)-C(11)	122.70(9)
C(2)-N(1)-H(1)	118.6
C(11)-N(1)-H(1)	118.6
C(12)-N(2)-C(16)	117.60(9)
O(1)-C(1)-C(9)	122.66(10)
O(1)-C(1)-C(2)	120.01(9)
C(9)-C(1)-C(2)	117.32(9)
N(1)-C(2)-C(3)	125.01(10)
N(1)-C(2)-C(1)	114.23(9)
C(3)-C(2)-C(1)	120.76(9)
C(2)-C(3)-C(4)	122.46(10)
C(2)-C(3)-H(3)	118.8
C(4)-C(3)-H(3)	118.8
O(2)-C(4)-C(3)	122.29(10)
O(2)-C(4)-C(10)	119.50(10)
C(3)-C(4)-C(10)	118.21(9)
C(6)-C(5)-C(10)	120.03(10)
C(6)-C(5)-H(5)	120.0
C(10)-C(5)-H(5)	120.0
C(5)-C(6)-C(7)	120.26(10)
C(5)-C(6)-H(6)	119.9
C(7)-C(6)-H(6)	119.9
C(8)-C(7)-C(6)	120.15(10)
C(8)-C(7)-H(7)	119.9
C(6)-C(7)-H(7)	119.9
C(7)-C(8)-C(9)	119.77(10)
C(7)-C(8)-H(8)	120.1
C(9)-C(8)-H(8)	120.1
C(8)-C(9)-C(10)	120.15(10)
C(8)-C(9)-C(1)	119.65(9)
C(10)-C(9)-C(1)	120.19(9)
C(5)-C(10)-C(9)	119.63(10)
C(5)-C(10)-C(4)	119.61(9)
C(9)-C(10)-C(4)	120.73(9)
N(1)-C(11)-C(12)	110.78(8)

N(1)-C(11)-H(11A)	109.5
C(12)-C(11)-H(11A)	109.5
N(1)-C(11)-H(11B)	109.5
C(12)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	108.1
N(2)-C(12)-C(13)	123.01(9)
N(2)-C(12)-C(11)	117.02(9)
C(13)-C(12)-C(11)	119.97(9)
C(14)-C(13)-C(12)	118.36(9)
С(14)-С(13)-Н(13)	120.8
С(12)-С(13)-Н(13)	120.8
C(13)-C(14)-C(15)	119.26(10)
C(13)-C(14)-H(14)	120.4
C(15)-C(14)-H(14)	120.4
C(16)-C(15)-C(14)	118.20(10)
C(16)-C(15)-H(15)	120.9
C(14)-C(15)-H(15)	120.9
N(2)-C(16)-C(15)	123.55(10)
N(2)-C(16)-H(16)	118.2
C(15)-C(16)-H(16)	118.2

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	16(1)	19(1)	19(1)	2(1)	-2(1)	-6(1)
O(2)	19(1)	23(1)	20(1)	0(1)	0(1)	-10(1)
N(1)	14(1)	16(1)	13(1)	2(1)	-1(1)	-5(1)
N(2)	14(1)	17(1)	14(1)	0(1)	0(1)	-2(1)
C(1)	13(1)	12(1)	14(1)	-1(1)	1(1)	0(1)
C(2)	14(1)	11(1)	13(1)	0(1)	1(1)	0(1)
C(3)	17(1)	16(1)	13(1)	0(1)	-1(1)	-3(1)
C(4)	14(1)	13(1)	16(1)	-2(1)	1(1)	-3(1)
C(5)	17(1)	16(1)	16(1)	-1(1)	5(1)	-2(1)
C(6)	22(1)	20(1)	15(1)	3(1)	5(1)	0(1)
C(7)	21(1)	26(1)	13(1)	2(1)	0(1)	1(1)
C(8)	14(1)	20(1)	16(1)	0(1)	0(1)	-1(1)
C(9)	13(1)	13(1)	12(1)	-1(1)	2(1)	1(1)
C(10)	14(1)	12(1)	13(1)	-2(1)	3(1)	0(1)
C(11)	14(1)	16(1)	12(1)	1(1)	-1(1)	-3(1)
C(12)	13(1)	11(1)	14(1)	-1(1)	1(1)	0(1)
C(13)	14(1)	15(1)	14(1)	-1(1)	-1(1)	-2(1)
C(14)	18(1)	16(1)	12(1)	0(1)	-1(1)	0(1)
C(15)	15(1)	16(1)	15(1)	1(1)	3(1)	-2(1)
C(16)	13(1)	18(1)	16(1)	0(1)	-1(1)	-4(1)

Table S3 Anisotropic displacement parameters (Å²x 10³) for H-1. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a* b* U¹²]

Table S4 Torsion angles [°] for H-1.

C(11)-N(1)-C(2)-C(3)	0.57(17)
C(11)-N(1)-C(2)-C(1)	-178.42(9)
O(1)-C(1)-C(2)-N(1)	6.24(14)
C(9)-C(1)-C(2)-N(1)	-174.47(9)
O(1)-C(1)-C(2)-C(3)	-172.80(10)
C(9)-C(1)-C(2)-C(3)	6.50(14)
N(1)-C(2)-C(3)-C(4)	178.05(10)
C(1)-C(2)-C(3)-C(4)	-3.02(16)
C(2)-C(3)-C(4)-O(2)	179.07(10)
C(2)-C(3)-C(4)-C(10)	-1.61(16)
C(10)-C(5)-C(6)-C(7)	0.79(17)
C(5)-C(6)-C(7)-C(8)	0.25(18)
C(6)-C(7)-C(8)-C(9)	-1.08(17)
C(7)-C(8)-C(9)-C(10)	0.87(16)
C(7)-C(8)-C(9)-C(1)	-178.20(10)
O(1)-C(1)-C(9)-C(8)	-7.03(16)
C(2)-C(1)-C(9)-C(8)	173.70(9)
O(1)-C(1)-C(9)-C(10)	173.91(10)
C(2)-C(1)-C(9)-C(10)	-5.37(14)
C(6)-C(5)-C(10)-C(9)	-1.00(16)
C(6)-C(5)-C(10)-C(4)	177.30(10)
C(8)-C(9)-C(10)-C(5)	0.17(15)
C(1)-C(9)-C(10)-C(5)	179.23(9)
C(8)-C(9)-C(10)-C(4)	-178.11(9)
C(1)-C(9)-C(10)-C(4)	0.95(15)
O(2)-C(4)-C(10)-C(5)	3.75(15)
C(3)-C(4)-C(10)-C(5)	-175.59(10)
O(2)-C(4)-C(10)-C(9)	-177.97(10)
C(3)-C(4)-C(10)-C(9)	2.69(15)
C(2)-N(1)-C(11)-C(12)	-179.10(9)
C(16)-N(2)-C(12)-C(13)	0.01(16)
C(16)-N(2)-C(12)-C(11)	179.89(9)
N(1)-C(11)-C(12)-N(2)	-1.24(13)
N(1)-C(11)-C(12)-C(13)	178.64(9)

N(2)-C(12)-C(13)-C(14)	0.32(16)
C(11)-C(12)-C(13)-C(14)	-179.56(10)
C(12)-C(13)-C(14)-C(15)	-0.45(16)
C(13)-C(14)-C(15)-C(16)	0.27(16)
C(12)-N(2)-C(16)-C(15)	-0.22(16)
C(14)-C(15)-C(16)-N(2)	0.07(17)

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(16)-H(16)N(2)#1	0.95	2.56	3.3915(14)	146.5
C(15)-H(15)O(1)#1	0.95	2.58	3.3634(13)	140.2
C(13)-H(13)O(2)#2	0.95	2.34	3.1655(13)	145.1
C(11)-H(11B)O(2)#2	0.99	2.66	3.2198(13)	116.1
C(11)-H(11B)O(2)#2	0.99	2.66	3.2198(13)	116.1
C(13)-H(13)O(2)#2	0.95	2.34	3.1655(13)	145.1
C(15)-H(15)O(1)#1	0.95	2.58	3.3634(13)	140.2
C(16)-H(16)N(2)#1	0.95	2.56	3.3915(14)	146.5

Table S5 Hydrogen bonds for H-1[Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y+1,-z #2 -x,-y,-z

	Х	у	Z	U(eq)
O(1)	1638(2)	-469(1)	5171(2)	12(1)
O(2)	10655(2)	-638(1)	9052(2)	14(1)
N(1)	3473(3)	232(1)	6992(2)	10(1)
N(2)	961(3)	1730(1)	8168(2)	13(1)
C(1)	3669(3)	-519(1)	6063(2)	8(1)
C(2)	4858(3)	-140(1)	7122(2)	9(1)
C(3)	7180(3)	-184(1)	8099(2)	10(1)
C(4)	8572(3)	-594(1)	8171(2)	9(1)
C(5)	8760(3)	-1380(1)	7166(2)	12(1)
C(6)	7746(4)	-1739(1)	6200(2)	14(1)
C(7)	5396(4)	-1703(1)	5199(2)	13(1)
C(8)	4047(3)	-1309(1)	5174(2)	10(1)
C(9)	5059(3)	-947(1)	6140(2)	9(1)
C(10)	7437(3)	-982(1)	7140(2)	9(1)
C(11)	4266(3)	633(1)	7961(2)	9(1)
C(12)	2186(3)	979(1)	7662(2)	9(1)
C(13)	2796(3)	1423(1)	8505(2)	9(1)
C(14)	5065(3)	1514(1)	9548(2)	13(1)
C(15)	5439(4)	1933(1)	10267(2)	15(1)
C(16)	3565(4)	2250(1)	9935(2)	14(1)
C(17)	1372(4)	2131(1)	8876(2)	14(1)

Table S6 Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for H-3. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(1)	1.220(2)
O(2)-C(4)	1.237(2)
N(1)-C(2)	1.339(2)
N(1)-C(11)	1.459(2)
N(1)-H(1)	0.8800
N(2)-C(17)	1.335(2)
N(2)-C(13)	1.348(2)
C(1)-C(9)	1.484(2)
C(1)-C(2)	1.504(2)
C(2)-C(3)	1.375(2)
C(3)-C(4)	1.437(2)
C(3)-H(3)	0.9500
C(4)-C(10)	1.503(2)
C(5)-C(6)	1.388(3)
C(5)-C(10)	1.392(3)
C(5)-H(5)	0.9500
C(6)-C(7)	1.394(3)
C(6)-H(6)	0.9500
C(7)-C(8)	1.387(3)
C(7)-H(7)	0.9500
C(8)-C(9)	1.397(2)
C(8)-H(8)	0.9500
C(9)-C(10)	1.405(2)
C(11)-C(12)	1.521(2)
C(11)-H(11A)	0.9900
C(11)-H(11B)	0.9900
C(12)-C(13)	1.509(2)
C(12)-H(12A)	0.9900
C(12)-H(12B)	0.9900
C(13)-C(14)	1.396(3)
C(14)-C(15)	1.387(3)
C(14)-H(14)	0.9500
C(15)-C(16)	1.384(3)
C(15)-H(15)	0.9500

Table S7 Bond lengths [Å] and angles [°] for H-3.

C(16)-C(17)	1.391(3)
C(16)-H(16)	0.9500
С(17)-Н(17)	0.9500
C(2)-N(1)-C(11)	122.20(15)
C(2)-N(1)-H(1)	118.9
C(11)-N(1)-H(1)	118.9
C(17)-N(2)-C(13)	117.65(16)
O(1)-C(1)-C(9)	122.10(16)
O(1)-C(1)-C(2)	120.19(16)
C(9)-C(1)-C(2)	117.71(15)
N(1)-C(2)-C(3)	124.94(17)
N(1)-C(2)-C(1)	113.90(15)
C(3)-C(2)-C(1)	121.15(16)
C(2)-C(3)-C(4)	121.96(17)
C(2)-C(3)-H(3)	119.0
C(4)-C(3)-H(3)	119.0
O(2)-C(4)-C(3)	122.44(17)
O(2)-C(4)-C(10)	119.09(16)
C(3)-C(4)-C(10)	118.46(15)
C(6)-C(5)-C(10)	120.19(17)
C(6)-C(5)-H(5)	119.9
C(10)-C(5)-H(5)	119.9
C(7)-C(6)-C(5)	120.29(18)
C(7)-C(6)-H(6)	119.9
C(5)-C(6)-H(6)	119.9
C(6)-C(7)-C(8)	120.10(18)
C(6)-C(7)-H(7)	120.0
C(8)-C(7)-H(7)	120.0
C(7)-C(8)-C(9)	119.90(17)
C(7)-C(8)-H(8)	120.1
C(9)-C(8)-H(8)	120.1
C(8)-C(9)-C(10)	120.01(16)
C(8)-C(9)-C(1)	120.09(16)
C(10)-C(9)-C(1)	119.86(16)
C(5)-C(10)-C(9)	119.51(16)

C(5)-C(10)-C(4)	119.67(16)
C(9)-C(10)-C(4)	120.83(16)
N(1)-C(11)-C(12)	109.42(14)
N(1)-C(11)-H(11A)	109.8
C(12)-C(11)-H(11A)	109.8
N(1)-C(11)-H(11B)	109.8
C(12)-C(11)-H(11B)	109.8
H(11A)-C(11)-H(11B)	108.2
C(13)-C(12)-C(11)	115.53(14)
C(13)-C(12)-H(12A)	108.4
C(11)-C(12)-H(12A)	108.4
C(13)-C(12)-H(12B)	108.4
C(11)-C(12)-H(12B)	108.4
H(12A)-C(12)-H(12B)	107.5
N(2)-C(13)-C(14)	122.24(17)
N(2)-C(13)-C(12)	114.42(15)
C(14)-C(13)-C(12)	123.34(16)
C(15)-C(14)-C(13)	118.86(17)
C(15)-C(14)-H(14)	120.6
C(13)-C(14)-H(14)	120.6
C(16)-C(15)-C(14)	119.42(18)
C(16)-C(15)-H(15)	120.3
C(14)-C(15)-H(15)	120.3
C(15)-C(16)-C(17)	117.75(18)
C(15)-C(16)-H(16)	121.1
C(17)-C(16)-H(16)	121.1
N(2)-C(17)-C(16)	124.07(18)
N(2)-C(17)-H(17)	118.0
С(16)-С(17)-Н(17)	118.0

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	9(1)	12(1)	13(1)	-1(1)	-2(1)	1(1)
O(2)	10(1)	16(1)	13(1)	0(1)	-4(1)	2(1)
N(1)	8(1)	9(1)	12(1)	-1(1)	-2(1)	1(1)
N(2)	12(1)	14(1)	14(1)	-2(1)	0(1)	3(1)
C(1)	8(1)	11(1)	7(1)	2(1)	2(1)	-1(1)
C(2)	9(1)	9(1)	9(1)	0(1)	3(1)	0(1)
C(3)	9(1)	9(1)	10(1)	-1(1)	0(1)	-2(1)
C(4)	10(1)	10(1)	8(1)	2(1)	1(1)	0(1)
C(5)	10(1)	13(1)	13(1)	2(1)	1(1)	1(1)
C(6)	16(1)	10(1)	18(1)	1(1)	4(1)	3(1)
C(7)	15(1)	9(1)	15(1)	-1(1)	2(1)	-4(1)
C(8)	9(1)	11(1)	11(1)	0(1)	1(1)	-3(1)
C(9)	9(1)	9(1)	8(1)	1(1)	2(1)	0(1)
C(10)	9(1)	10(1)	8(1)	2(1)	1(1)	0(1)
C(11)	9(1)	8(1)	10(1)	-1(1)	-2(1)	1(1)
C(12)	7(1)	11(1)	10(1)	-1(1)	0(1)	-1(1)
C(13)	11(1)	9(1)	8(1)	0(1)	3(1)	1(1)
C(14)	10(1)	12(1)	15(1)	-1(1)	0(1)	2(1)
C(15)	12(1)	15(1)	16(1)	-2(1)	-1(1)	-1(1)
C(16)	19(1)	9(1)	14(1)	-2(1)	4(1)	-1(1)
C(17)	16(1)	13(1)	14(1)	-1(1)	1(1)	6(1)

Table S8 Anisotropic displacement parameters (Å²x 10³)for H-3. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

Table S9 Torsion angles [°] for H-3.

C(11)-N(1)-C(2)-C(3)	-2.9(3)
C(11)-N(1)-C(2)-C(1)	178.03(15)
O(1)-C(1)-C(2)-N(1)	1.1(2)
C(9)-C(1)-C(2)-N(1)	-179.38(15)
O(1)-C(1)-C(2)-C(3)	-178.07(17)
C(9)-C(1)-C(2)-C(3)	1.5(2)
N(1)-C(2)-C(3)-C(4)	-179.60(17)
C(1)-C(2)-C(3)-C(4)	-0.6(3)
C(2)-C(3)-C(4)-O(2)	-179.58(17)
C(2)-C(3)-C(4)-C(10)	0.1(3)
C(10)-C(5)-C(6)-C(7)	0.0(3)
C(5)-C(6)-C(7)-C(8)	-0.6(3)
C(6)-C(7)-C(8)-C(9)	0.7(3)
C(7)-C(8)-C(9)-C(10)	-0.2(3)
C(7)-C(8)-C(9)-C(1)	177.43(17)
O(1)-C(1)-C(9)-C(8)	-0.1(3)
C(2)-C(1)-C(9)-C(8)	-179.63(16)
O(1)-C(1)-C(9)-C(10)	177.58(17)
C(2)-C(1)-C(9)-C(10)	-2.0(2)
C(6)-C(5)-C(10)-C(9)	0.5(3)
C(6)-C(5)-C(10)-C(4)	-179.10(17)
C(8)-C(9)-C(10)-C(5)	-0.4(3)
C(1)-C(9)-C(10)-C(5)	-178.06(16)
C(8)-C(9)-C(10)-C(4)	179.21(16)
C(1)-C(9)-C(10)-C(4)	1.6(3)
O(2)-C(4)-C(10)-C(5)	-1.3(3)
C(3)-C(4)-C(10)-C(5)	179.03(17)
O(2)-C(4)-C(10)-C(9)	179.09(17)
C(3)-C(4)-C(10)-C(9)	-0.6(2)
C(2)-N(1)-C(11)-C(12)	-174.53(16)
N(1)-C(11)-C(12)-C(13)	-176.52(15)
C(17)-N(2)-C(13)-C(14)	-0.2(3)
C(17)-N(2)-C(13)-C(12)	179.90(16)
C(11)-C(12)-C(13)-N(2)	177.50(16)

C(11)-C(12)-C(13)-C(14)	-2.4(3)
N(2)-C(13)-C(14)-C(15)	0.3(3)
C(12)-C(13)-C(14)-C(15)	-179.82(17)
C(13)-C(14)-C(15)-C(16)	-0.1(3)
C(14)-C(15)-C(16)-C(17)	-0.2(3)
C(13)-N(2)-C(17)-C(16)	-0.1(3)
C(15)-C(16)-C(17)-N(2)	0.3(3)

Table S10 Atomic coordinates	(x 10 ⁴) and ed	quivalent isotro	pic dis	placement	parameters	(Å ² x 10	3)
------------------------------	--------------------	----------	------------------	---------	-----------	------------	----------------------	----

	Х	У	Z	U(eq)
	5856(3)	3065(2)	3128(1)	19(1)
S(1)	8601(2)	1312(2)	8119(1)	19(1)
D(2A)	15717(7)	4130(4)	5656(1)	17(1)
D(1A)	6728(6)	224(4)	5487(1)	15(1)
N(1)	6517(7)	2964(5)	9776(1)	12(1)
D(1)	8438(6)	4936(4)	10479(1)	14(1)
D(2)	-489(6)	1102(4)	10663(1)	17(1)
C(11A)	9175(9)	2856(6)	4379(2)	12(1)
N(1A)	8420(7)	1942(5)	4781(1)	13(1)
C(13)	6741(9)	1165(6)	8589(2)	13(1)
C(16A)	7988(10)	4270(7)	2804(2)	19(1)
C(13A)	7868(9)	3377(6)	3595(2)	13(1)
C(12A)	7071(9)	2537(6)	4021(2)	13(1)
C(2A)	9878(9)	2127(6)	5156(2)	12(1)
C(3A)	12191(9)	3109(6)	5203(2)	14(1)
C(4A)	13623(9)	3236(6)	5613(2)	13(1)
C(10A)	12579(9)	2283(6)	6005(2)	12(1)
C(5A)	13933(10)	2386(6)	6410(2)	15(1)
C(6A)	12974(10)	1490(7)	6774(2)	17(1)
C(14A)	10008(10)	4351(6)	3496(2)	16(1)
C(15A)	10091(11)	4856(7)	3043(2)	22(1)
C(9A)	10207(9)	1285(6)	5970(2)	12(1)
C(1A)	8743(9)	1130(6)	5540(2)	11(1)
C(8A)	9261(9)	380(6)	6339(2)	14(1)
C(7A)	10642(10)	485(6)	6735(2)	18(1)
C(16)	6365(10)	10(7)	7794(2)	19(1)
C(12)	7640(9)	2123(6)	9018(2)	14(1)
C(11)	5644(9)	1931(6)	9377(2)	12(1)
2(2)	5197(9)	2909(6)	10155(2)	12(1)
C(1)	(205(0))	1011(6)	10524(2)	12(1)

for H-4. U(eq) is defined as one third of the trace of the orthogonalized $U^{ij}\,\text{tensor.}$

C(9)	5105(9)	4067(6)	10967(2)	11(1)
C(10)	2764(9)	3087(6)	11007(2)	12(1)
C(5)	1531(9)	3131(6)	11413(2)	16(1)
C(6)	2598(10)	4184(7)	11772(2)	18(1)
C(14)	4520(9)	146(6)	8490(2)	16(1)
C(15)	4323(10)	-502(7)	8035(2)	19(1)
C(8)	6181(9)	5112(6)	11327(2)	14(1)
C(7)	4927(10)	5184(6)	11728(2)	19(1)
C(4)	1575(9)	1965(6)	10617(2)	12(1)
C(3)	2899(9)	1966(6)	10203(2)	13(1)

1.725(6)
1.734(5)
1.727(6)
1.733(5)
1.246(6)
1.219(6)
1.343(6)
1.452(6)
0.8800
1.239(6)
1.234(6)
1.463(6)
1.528(6)
0.9900
0.9900
1.343(6)
0.8800
1.366(7)
1.500(7)
1.342(8)
0.9500
1.339(7)
1.500(7)
0.9900
0.9900
1.375(7)
1.510(7)
1.426(7)
0.9500
1.493(7)
1.391(7)
1.405(7)
1.391(7)
0.9500

Table S11 Bond lengths [Å] and angles [°] for H-4.

C(6A)-C(7A)	1.390(8)
C(6A)-H(6A)	0.9500
C(14A)-C(15A)	1.423(7)
C(14A)-H(14A)	0.9500
С(15А)-Н(15А)	0.9500
C(9A)-C(8A)	1.403(7)
C(9A)-C(1A)	1.482(7)
C(8A)-C(7A)	1.376(7)
C(8A)-H(8A)	0.9500
C(7A)-H(7A)	0.9500
C(16)-C(15)	1.346(8)
C(16)-H(16)	0.9500
C(12)-C(11)	1.525(7)
C(12)-H(12C)	0.9900
C(12)-H(12D)	0.9900
С(11)-Н(11С)	0.9900
C(11)-H(11D)	0.9900
C(2)-C(3)	1.366(7)
C(2)-C(1)	1.497(7)
C(1)-C(9)	1.474(7)
C(9)-C(10)	1.395(7)
C(9)-C(8)	1.397(7)
C(10)-C(5)	1.391(7)
C(10)-C(4)	1.513(7)
C(5)-C(6)	1.396(7)
C(5)-H(5)	0.9500
C(6)-C(7)	1.398(8)
C(6)-H(6)	0.9500
C(14)-C(15)	1.429(7)
C(14)-H(14)	0.9500
C(15)-H(15)	0.9500
C(8)-C(7)	1.386(7)
C(8)-H(8)	0.9500
C(7)-H(7)	0.9500
C(4)-C(3)	1.434(7)
C(3)-H(3)	0.9500

C(16A)-S(1A)-C(13A)	92.0(3)
C(16)-S(1)-C(13)	92.4(3)
C(2)-N(1)-C(11)	121.9(4)
C(2)-N(1)-H(1)	119.1
C(11)-N(1)-H(1)	119.1
N(1A)-C(11A)-C(12A)	110.1(4)
N(1A)-C(11A)-H(11A)	109.6
C(12A)-C(11A)-H(11A)	109.6
N(1A)-C(11A)-H(11B)	109.6
C(12A)-C(11A)-H(11B)	109.6
H(11A)-C(11A)-H(11B)	108.2
C(2A)-N(1A)-C(11A)	121.2(4)
C(2A)-N(1A)-H(1A)	119.4
C(11A)-N(1A)-H(1A)	119.4
C(14)-C(13)-C(12)	129.6(5)
C(14)-C(13)-S(1)	110.2(4)
C(12)-C(13)-S(1)	120.2(4)
C(15A)-C(16A)-S(1A)	110.8(4)
C(15A)-C(16A)-H(16A)	124.6
S(1A)-C(16A)-H(16A)	124.6
C(14A)-C(13A)-C(12A)	130.6(5)
C(14A)-C(13A)-S(1A)	110.3(4)
C(12A)-C(13A)-S(1A)	119.0(4)
C(13A)-C(12A)-C(11A)	110.9(4)
C(13A)-C(12A)-H(12A)	109.5
C(11A)-C(12A)-H(12A)	109.5
C(13A)-C(12A)-H(12B)	109.5
C(11A)-C(12A)-H(12B)	109.5
H(12A)-C(12A)-H(12B)	108.0
N(1A)-C(2A)-C(3A)	125.4(4)
N(1A)-C(2A)-C(1A)	113.5(4)
C(3A)-C(2A)-C(1A)	121.1(4)
C(2A)-C(3A)-C(4A)	121.9(4)
C(2A)-C(3A)-H(3A)	119.1
C(4A)-C(3A)-H(3A)	119.1

O(2A)-C(4A)-C(3A)	121.8(4)
O(2A)-C(4A)-C(10A)	119.0(4)
C(3A)-C(4A)-C(10A)	119.2(4)
C(5A)-C(10A)-C(9A)	119.2(4)
C(5A)-C(10A)-C(4A)	120.4(4)
C(9A)-C(10A)-C(4A)	120.4(4)
C(10A)-C(5A)-C(6A)	120.6(5)
C(10A)-C(5A)-H(5A)	119.7
C(6A)-C(5A)-H(5A)	119.7
C(7A)-C(6A)-C(5A)	119.9(5)
C(7A)-C(6A)-H(6A)	120.0
C(5A)-C(6A)-H(6A)	120.0
C(13A)-C(14A)-C(15A)	113.7(5)
C(13A)-C(14A)-H(14A)	123.1
C(15A)-C(14A)-H(14A)	123.1
C(16A)-C(15A)-C(14A)	113.1(5)
C(16A)-C(15A)-H(15A)	123.5
C(14A)-C(15A)-H(15A)	123.5
C(8A)-C(9A)-C(10A)	119.8(4)
C(8A)-C(9A)-C(1A)	119.9(4)
C(10A)-C(9A)-C(1A)	120.3(4)
O(1A)-C(1A)-C(9A)	122.7(4)
O(1A)-C(1A)-C(2A)	120.1(4)
C(9A)-C(1A)-C(2A)	117.1(4)
C(7A)-C(8A)-C(9A)	120.1(5)
C(7A)-C(8A)-H(8A)	120.0
C(9A)-C(8A)-H(8A)	120.0
C(8A)-C(7A)-C(6A)	120.4(5)
C(8A)-C(7A)-H(7A)	119.8
C(6A)-C(7A)-H(7A)	119.8
C(15)-C(16)-S(1)	111.0(4)
C(15)-C(16)-H(16)	124.5
S(1)-C(16)-H(16)	124.5
C(13)-C(12)-C(11)	111.8(4)
C(13)-C(12)-H(12C)	109.3
С(11)-С(12)-Н(12С)	109.3

C(13)-C(12)-H(12D)	109.3
C(11)-C(12)-H(12D)	109.3
H(12C)-C(12)-H(12D)	107.9
N(1)-C(11)-C(12)	110.2(4)
N(1)-C(11)-H(11C)	109.6
С(12)-С(11)-Н(11С)	109.6
N(1)-C(11)-H(11D)	109.6
C(12)-C(11)-H(11D)	109.6
H(11C)-C(11)-H(11D)	108.1
N(1)-C(2)-C(3)	125.0(4)
N(1)-C(2)-C(1)	114.6(4)
C(3)-C(2)-C(1)	120.4(4)
O(1)-C(1)-C(9)	121.6(4)
O(1)-C(1)-C(2)	119.5(4)
C(9)-C(1)-C(2)	118.8(4)
C(10)-C(9)-C(8)	120.3(4)
C(10)-C(9)-C(1)	119.5(4)
C(8)-C(9)-C(1)	120.1(4)
C(5)-C(10)-C(9)	119.4(5)
C(5)-C(10)-C(4)	119.9(4)
C(9)-C(10)-C(4)	120.7(4)
C(10)-C(5)-C(6)	120.2(5)
C(10)-C(5)-H(5)	119.9
C(6)-C(5)-H(5)	119.9
C(5)-C(6)-C(7)	120.2(5)
C(5)-C(6)-H(6)	119.9
C(7)-C(6)-H(6)	119.9
C(13)-C(14)-C(15)	113.0(5)
C(13)-C(14)-H(14)	123.5
C(15)-C(14)-H(14)	123.5
C(16)-C(15)-C(14)	113.4(5)
C(16)-C(15)-H(15)	123.3
C(14)-C(15)-H(15)	123.3
C(7)-C(8)-C(9)	120.2(5)
C(7)-C(8)-H(8)	119.9
C(9)-C(8)-H(8)	119.9

C(8)-C(7)-C(6)	119.6(5)
C(8)-C(7)-H(7)	120.2
C(6)-C(7)-H(7)	120.2
O(2)-C(4)-C(3)	122.5(5)
O(2)-C(4)-C(10)	119.4(4)
C(3)-C(4)-C(10)	118.1(4)
C(2)-C(3)-C(4)	122.4(4)
C(2)-C(3)-H(3)	118.8
C(4)-C(3)-H(3)	118.8

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
S(1A)	16(1)	20(1)	21(1)	2(1)	-5(1)	1(1)
S(1)	14(1)	22(1)	21(1)	-3(1)	5(1)	0(1)
O(2A)	13(2)	12(2)	25(2)	2(1)	0(1)	-4(1)
O(1A)	10(2)	14(2)	21(2)	1(1)	2(1)	-1(1)
N(1)	7(2)	11(2)	17(2)	-1(2)	1(2)	-2(2)
O(1)	8(2)	14(2)	21(2)	1(1)	3(1)	0(1)
O(2)	9(2)	14(2)	27(2)	0(1)	2(1)	-2(1)
C(11A)	8(2)	12(2)	15(2)	2(2)	1(2)	2(2)
N(1A)	7(2)	12(2)	17(2)	1(2)	1(2)	-2(2)
C(13)	12(2)	13(2)	15(2)	2(2)	2(2)	6(2)
C(16A)	22(3)	19(3)	16(2)	5(2)	-2(2)	3(2)
C(13A)	11(2)	12(2)	19(2)	-4(2)	-3(2)	6(2)
C(12A)	7(2)	11(2)	21(3)	1(2)	1(2)	0(2)
C(2A)	13(2)	10(2)	13(2)	2(2)	2(2)	4(2)
C(3A)	15(2)	10(2)	15(2)	1(2)	1(2)	1(2)
C(4A)	9(2)	7(2)	21(3)	-1(2)	4(2)	1(2)
C(10A)	13(2)	5(2)	18(2)	-2(2)	2(2)	1(2)
C(5A)	14(2)	13(2)	18(2)	0(2)	0(2)	3(2)
C(6A)	20(3)	20(3)	13(2)	1(2)	-2(2)	7(2)
C(14A)	13(2)	15(2)	21(3)	2(2)	1(2)	2(2)
C(15A)	24(3)	22(3)	22(3)	4(2)	5(2)	4(2)
C(9A)	12(2)	8(2)	16(2)	0(2)	3(2)	3(2)
C(1A)	8(2)	7(2)	19(2)	-1(2)	3(2)	2(2)
C(8A)	6(2)	12(2)	23(3)	0(2)	1(2)	1(2)
C(7A)	21(3)	15(2)	20(3)	4(2)	7(2)	6(2)
C(16)	17(3)	23(3)	19(3)	-6(2)	-2(2)	7(2)
C(12)	12(2)	10(2)	18(2)	-2(2)	0(2)	1(2)
C(11)	12(2)	8(2)	16(2)	0(2)	-1(2)	1(2)
C(2)	17(2)	8(2)	12(2)	0(2)	-1(2)	6(2)
C(1)	13(2)	6(2)	16(2)	1(2)	0(2)	2(2)
C(9)	14(2)	6(2)	14(2)	4(2)	0(2)	4(2)

Table S12 Anisotropic displacement parameters (Å²x 10³) for H-4. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

C(10)	14(2)	7(2)	17(2)	3(2)	-1(2)	1(2)
C(5)	12(2)	13(2)	23(3)	3(2)	2(2)	0(2)
C(6)	20(3)	20(3)	15(2)	2(2)	4(2)	7(2)
C(14)	12(2)	17(2)	21(3)	0(2)	4(2)	4(2)
C(15)	14(3)	22(3)	21(3)	-4(2)	-4(2)	1(2)
C(8)	12(2)	9(2)	22(3)	5(2)	0(2)	5(2)
C(7)	25(3)	15(2)	18(3)	0(2)	-3(2)	9(2)
C(4)	10(2)	5(2)	19(2)	4(2)	-1(2)	1(2)
C(3)	13(2)	10(2)	15(2)	-1(2)	-1(2)	2(2)

Table S13 Torsion angles [°] for H-4.

C(12A)-C(11A)-N(1A)-C(2A)	-174.7(4)
C(16)-S(1)-C(13)-C(14)	0.3(4)
C(16)-S(1)-C(13)-C(12)	-178.3(4)
C(13A)-S(1A)-C(16A)-C(15A)	0.2(4)
C(16A)-S(1A)-C(13A)-C(14A)	0.2(4)
C(16A)-S(1A)-C(13A)-C(12A)	-178.0(4)
C(14A)-C(13A)-C(12A)-C(11A)	-2.3(7)
S(1A)-C(13A)-C(12A)-C(11A)	175.6(3)
N(1A)-C(11A)-C(12A)-C(13A)	-176.4(4)
C(11A)-N(1A)-C(2A)-C(3A)	-2.2(7)
C(11A)-N(1A)-C(2A)-C(1A)	177.9(4)
N(1A)-C(2A)-C(3A)-C(4A)	-179.9(4)
C(1A)-C(2A)-C(3A)-C(4A)	0.0(7)
C(2A)-C(3A)-C(4A)-O(2A)	-179.8(5)
C(2A)-C(3A)-C(4A)-C(10A)	-0.4(7)
O(2A)-C(4A)-C(10A)-C(5A)	-0.4(7)
C(3A)-C(4A)-C(10A)-C(5A)	-179.9(4)
O(2A)-C(4A)-C(10A)-C(9A)	179.0(4)
C(3A)-C(4A)-C(10A)-C(9A)	-0.4(7)
C(9A)-C(10A)-C(5A)-C(6A)	1.1(7)
C(4A)-C(10A)-C(5A)-C(6A)	-179.5(4)
C(10A)-C(5A)-C(6A)-C(7A)	-0.1(7)
C(12A)-C(13A)-C(14A)-C(15A)	177.4(5)
S(1A)-C(13A)-C(14A)-C(15A)	-0.6(6)
S(1A)-C(16A)-C(15A)-C(14A)	-0.5(6)
C(13A)-C(14A)-C(15A)-C(16A)	0.7(7)
C(5A)-C(10A)-C(9A)-C(8A)	-1.3(7)
C(4A)-C(10A)-C(9A)-C(8A)	179.2(4)
C(5A)-C(10A)-C(9A)-C(1A)	-179.0(4)
C(4A)-C(10A)-C(9A)-C(1A)	1.6(7)
C(8A)-C(9A)-C(1A)-O(1A)	-0.9(7)
C(10A)-C(9A)-C(1A)-O(1A)	176.7(4)
C(8A)-C(9A)-C(1A)-C(2A)	-179.6(4)
C(10A)-C(9A)-C(1A)-C(2A)	-2.0(6)

N(1A)-C(2A)-C(1A)-O(1A)	2.3(6)
C(3A)-C(2A)-C(1A)-O(1A)	-177.6(4)
N(1A)-C(2A)-C(1A)-C(9A)	-178.9(4)
C(3A)-C(2A)-C(1A)-C(9A)	1.2(6)
C(10A)-C(9A)-C(8A)-C(7A)	0.6(7)
C(1A)-C(9A)-C(8A)-C(7A)	178.3(4)
C(9A)-C(8A)-C(7A)-C(6A)	0.3(7)
C(5A)-C(6A)-C(7A)-C(8A)	-0.6(8)
C(13)-S(1)-C(16)-C(15)	-0.1(4)
C(14)-C(13)-C(12)-C(11)	-2.8(7)
S(1)-C(13)-C(12)-C(11)	175.4(3)
C(2)-N(1)-C(11)-C(12)	-174.1(4)
C(13)-C(12)-C(11)-N(1)	-176.2(4)
C(11)-N(1)-C(2)-C(3)	-3.0(7)
C(11)-N(1)-C(2)-C(1)	179.3(4)
N(1)-C(2)-C(1)-O(1)	0.4(6)
C(3)-C(2)-C(1)-O(1)	-177.3(4)
N(1)-C(2)-C(1)-C(9)	-179.5(4)
C(3)-C(2)-C(1)-C(9)	2.7(6)
O(1)-C(1)-C(9)-C(10)	177.6(4)
C(2)-C(1)-C(9)-C(10)	-2.5(6)
O(1)-C(1)-C(9)-C(8)	-0.1(7)
C(2)-C(1)-C(9)-C(8)	179.9(4)
C(8)-C(9)-C(10)-C(5)	-1.4(7)
C(1)-C(9)-C(10)-C(5)	-179.0(4)
C(8)-C(9)-C(10)-C(4)	179.4(4)
C(1)-C(9)-C(10)-C(4)	1.8(6)
C(9)-C(10)-C(5)-C(6)	1.8(7)
C(4)-C(10)-C(5)-C(6)	-179.0(4)
C(10)-C(5)-C(6)-C(7)	-0.9(7)
C(12)-C(13)-C(14)-C(15)	177.9(5)
S(1)-C(13)-C(14)-C(15)	-0.4(6)
S(1)-C(16)-C(15)-C(14)	-0.2(6)
C(13)-C(14)-C(15)-C(16)	0.4(7)
C(10)-C(9)-C(8)-C(7)	0.0(7)
C(1)-C(9)-C(8)-C(7)	177.5(4)

C(9)-C(8)-C(7)-C(6)	1.0(7)
C(5)-C(6)-C(7)-C(8)	-0.6(7)
C(5)-C(10)-C(4)-O(2)	0.3(7)
C(9)-C(10)-C(4)-O(2)	179.5(4)
C(5)-C(10)-C(4)-C(3)	179.6(4)
C(9)-C(10)-C(4)-C(3)	-1.2(6)
N(1)-C(2)-C(3)-C(4)	-179.7(4)
C(1)-C(2)-C(3)-C(4)	-2.2(7)
O(2)-C(4)-C(3)-C(2)	-179.3(4)
C(10)-C(4)-C(3)-C(2)	1.5(7)

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(3)-H(3)O(2)#1	0.95	2.65	3.584(6)	168.1
C(14)-H(14)O(2)#1	0.95	2.50	3.440(6)	168.1
C(12)-H(12D)O(2)#2	0.99	2.59	3.392(6)	138.0
C(16)-H(16)S(1A)#3	0.95	2.95	3.681(5)	134.7
C(14A)-H(14A)O(2A)#4	0.95	2.51	3.445(6)	168.5
C(3A)-H(3A)O(2A)#4	0.95	2.61	3.545(6)	168.9
C(12A)-H(12B)O(2A)#5	0.99	2.61	3.405(6)	137.5
N(1A)-H(1A)O(1A)#3	0.88	2.28	3.120(5)	159.8
N(1)-H(1)O(1)#6	0.88	2.26	3.105(5)	161.4
C(3)-H(3)O(2)#1	0.95	2.65	3.584(6)	168.1
C(14)-H(14)O(2)#1	0.95	2.50	3.440(6)	168.1
C(12)-H(12D)O(2)#2	0.99	2.59	3.392(6)	138.0
N(1)-H(1)O(1)#6	0.88	2.26	3.105(5)	161.4
C(3)-H(3)O(2)#1	0.95	2.65	3.584(6)	168.1
C(14)-H(14)O(2)#1	0.95	2.50	3.440(6)	168.1
C(12)-H(12D)O(2)#2	0.99	2.59	3.392(6)	138.0
C(16)-H(16)S(1A)#3	0.95	2.95	3.681(5)	134.7
C(14A)-H(14A)O(2A)#4	0.95	2.51	3.445(6)	168.5
C(3A)-H(3A)O(2A)#4	0.95	2.61	3.545(6)	168.9
C(12A)-H(12B)O(2A)#5	0.99	2.61	3.405(6)	137.5
N(1A)-H(1A)O(1A)#3	0.88	2.28	3.120(5)	159.8
N(1)-H(1)O(1)#6	0.88	2.26	3.105(5)	161.4
C(3)-H(3)O(2)#1	0.95	2.65	3.584(6)	168.1
C(14)-H(14)O(2)#1	0.95	2.50	3.440(6)	168.1
C(12)-H(12D)O(2)#2	0.99	2.59	3.392(6)	138.0
N(1)-H(1)O(1)#6	0.88	2.26	3.105(5)	161.4
N(1)-H(1)O(1)#6	0.88	2.26	3.105(5)	161.4
N(1A)-H(1A)O(1A)#3	0.88	2.28	3.120(5)	159.8
C(12A)-H(12B)O(2A)#5	0.99	2.61	3.405(6)	137.5
C(3A)-H(3A)O(2A)#4	0.95	2.61	3.545(6)	168.9
C(14A)-H(14A)O(2A)#4	0.95	2.51	3.445(6)	168.5
C(16)-H(16)S(1A)#3	0.95	2.95	3.681(5)	134.7

Table S14 Hydrogen bonds for H-4 [Å and °].

C(12)-H(12D)O(2)#2	0.99	2.59	3.392(6)	138.0
C(14)-H(14)O(2)#1	0.95	2.50	3.440(6)	168.1
C(3)-H(3)O(2)#1	0.95	2.65	3.584(6)	168.1
N(1)-H(1)O(1)#6	0.88	2.26	3.105(5)	161.4
N(1A)-H(1A)O(1A)#3	0.88	2.28	3.120(5)	159.8
C(12A)-H(12B)O(2A)#5	0.99	2.61	3.405(6)	137.5
C(3A)-H(3A)O(2A)#4	0.95	2.61	3.545(6)	168.9
C(14A)-H(14A)O(2A)#4	0.95	2.51	3.445(6)	168.5
C(16)-H(16)S(1A)#3	0.95	2.95	3.681(5)	134.7
C(12)-H(12D)O(2)#2	0.99	2.59	3.392(6)	138.0
C(14)-H(14)O(2)#1	0.95	2.50	3.440(6)	168.1
C(3)-H(3)O(2)#1	0.95	2.65	3.584(6)	168.1
N(1)-H(1)O(1)#6	0.88	2.26	3.105(5)	161.4
N(1A)-H(1A)O(1A)#3	0.88	2.28	3.120(5)	159.8
C(12A)-H(12B)O(2A)#5	0.99	2.61	3.405(6)	137.5
C(3A)-H(3A)O(2A)#4	0.95	2.61	3.545(6)	168.9
C(14A)-H(14A)O(2A)#4	0.95	2.51	3.445(6)	168.5
C(16)-H(16)S(1A)#3	0.95	2.95	3.681(5)	134.7
C(12)-H(12D)O(2)#2	0.99	2.59	3.392(6)	138.0
C(14)-H(14)O(2)#1	0.95	2.50	3.440(6)	168.1
C(3)-H(3)O(2)#1	0.95	2.65	3.584(6)	168.1

#1 -x,-y,-z+2 #2 -x+1,-y,-z+2 #3 -x+1,-y,-z+1 #4 -x+3,-y+1,-z+1 #5 -x+2,-y+1,-z+1 #6 -x+2,-y+1,-z+2