Electronic supplementary material

Red phosphor based on Eu³⁺- isoelectronically doped Ba₂SiO₄ obtained via sol-gel route for solid state lightning.

Airton G. B. Junior^{a,b}, Diego A. Ceccato^{a,b}, Sergio A. M. Lima^{a,b} and Ana. M. Pires^{a,b,*}

^aSão Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP 19060-900, Brazil. ^bSão Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto SP, 15054-000, Brazil.

*Ana Maria Pires

Address:

São Paulo State University (Unesp), School of Technology and Sciences, R. Roberto

Simonsen, 305, 19060-900 - Presidente Prudente/SP - Brazil.

E-mail: anapires@fct.unesp.br

Tel: +55 1832295748

Experimental procedure

Table ES1. Doping proportions and amount of reagents added, assuming 2.0000 g of the product. The Eu³⁺ concentration was isoelectronically varied from 1 to 5 %, i.e., keeping equivalent positive and negative charges according to the sum of cation charges and SiO_{4}^{4-} charges $\binom{3n}{Eu^3} + \frac{2n}{Ba^2} = +4$, where $\binom{n}{Ba^2} + \binom{n}{Eu^3} + \binom{n}{Eu^3} + \frac{n}{Ba^2}$ are the mol amount of Ba²⁺ and Eu³⁺, respectively).

Eu ³⁺ doping			Structural	Molecular	Molecular Ba ²⁺ Volume (mL)		e (mL)
% [a]	at %[b]	ch%[c]	formula	weight	acetate	Eu ³⁺	TEOS**
				/ g/mol	mass (g)	acetate*	
5 %	5.13 at%	7.5 ch%	$Ba_{1.85}Eu_{0.1}SiO_4$	361.4125	2.6149	11.07	10.06
4%	4.08 at%	6 ch%	Ba1.88Eu0.08SiO4	362.4944	2.6494	8.83	10.03
3 %	3.05 at%	4.5 ch%	Ba _{1.91} Eu _{0.06} SiO ₄	363.5763	2.6836	4.66	10.00
2 %	2.02 at%	3 ch%	Ba _{1.94} Eu _{0.04} SiO ₄	364.6582	2.7175	4.39	9.97
1 %	1.00 at%	1.5 ch%	Ba _{1.97} Eu _{0.02} SiO ₄	365.7401	2.7517	2.19	9.94
Undoped	-	-	Ba ₂ SiO ₄	366.8220	2.7852	-	9.91

[a] Eu^{3+} -doping percentage in relation to 2 mols of Ba^{2+} in the undoped Ba_2SiO_4 . [b] Eu^{3+} -doping percentage in relation to the total cation mol amount for each sample; [c] Eu^{3+} -doping percentage in relation to the total cation charge in each sample.

*0.05 mol.L⁻¹in acetic acid solution

**0.55 mol.L⁻¹in isopropyl alcohol solution.

Table ES2

Table ES2. The full width at half maximum, position, band area and height for the (v_1) v_s and (v_3) v_{as} vibrational mode in the Raman spectra for the undoped and doped-phosphors.

Band	Area / arb. units	Position/cm ⁻¹	FWHM/cm ⁻¹	Height/arb. units						
		5 %								
$(v_1) v_s (SiO_4)$	117411	822	7	10471						
	44141	856	12	2331						
$(v_3) v_{as} (SiO_4)$	12893	885	10	749						
	25576	909	10	1530						
4 %										
$(v_1) v_s (SiO_4)$	180867	822	7	15440						
	59486	857	11	3236						
$(v_3) v_{as} (SiO_4)$	29749	885	16	1158						
	41930	909	11	2314						
3 %										
$(v_1) v_s (SiO_4)$	113725	822	8	8207						
	40250	857	13	1945						
$(v_3) v_{as} (SiO_4)$	18011	885	14	766						
	38062	909	16	1439						
2 %										
$(v_1) v_s (SiO_4)$	172552	822	8	12325						
	59749	857	13	2957						
$(v_3) v_{as} (SiO_4)$	36740	885	17	1310						
	55204	909	16	2156						
1 %										
$(v_1) v_s (SiO_4)$	298999	822	7	25199						
	95598	857	11	5250						
$(v_3) v_{as} (SiO_4)$	50187	885	16	1928						
	76444	909	12	3796						
Undoped										
$(v_1) v_s (SiO_4)$	215292	822	6	20913						
	65351	857	10	4093						
$(v_3) v_{as} (SiO_4)$	26499	885	11	1533						
	46811	909	10	3036						

Crystallite size determination by Scherrer method.

The crystallite size was determinate according to Equation ES1.¹

$$\beta_p = \frac{c\lambda}{\varepsilon cos\theta}_{\text{(Equation ES1)}}$$

Where β_p is the full width at half maximum radians of a given *h k l* reflection peak, ε , in the corresponding direction to the (*h k l*) and *c* is a constant that depends on the reflection symmetry which usually is given as 0.9 for non-spherical crystallite. To calculate the samples crystallite size the three most intense peaks observed in the diffraction pattern related to the (1 2 1), (2 1 1) and (0 3 1) plans were considered.

Figure ES2. (a) Energy Dispersive Spectroscopy (EDS) for Eu^{3+} -doped $Ba_2SiO_4^{[a]}$ and (b) chemical mapping by EDS.

[a] The phosphor was analyzed by energy dispersive spectroscopy (X OXFORD *Instruments* model INCAx-act) to identify elements on the particle surfaces. The elements Ba, Eu, Si and O observed are from the Ba₂SiO₄:Eu³⁺ phase, the element Au was used to metalize the sample and the element C attributed to the formation of amorphous carbonate on the particles surface, as it is discussed in the FTIR results.

Figure ES3. Chemical mapping by EDS for Ba₂SiO₄:Eu³⁺(5%)^[a].

[a] Chemical mapping obtained by EDS showing the homogeneous distribution of the elements Ba, Eu and Si in an agglomerate of particles. The element Ba is shown in red, Si in green and Eu in blue. Also, the homogeneous distribution can be seen at the bottom of the figure.

Figure ES4. Bandgap calculation for undoped and Eu^{3+} -doped Ba_2SiO_4 prepared by solgel method.

Figure ES5. Kubelka-Munk approximation for Ba_2SiO_4 :Eu³⁺(5%) considering direct and indirect transition.

Figure ES6 Figure ES6. Emission spectra of Ba_2SiO_4 :Eu³⁺ powder samples under 250 nm measured at room temperature.

Figure ES7. Excitation spectra at 77 K of Ba₂SiO₄:Eu³⁺ samples monitoring the Eu³⁺ ${}^{7}F_{0}\rightarrow{}^{5}D_{0}$ transition upon selective emission in the different ${}^{5}D_{0}\rightarrow{}^{7}F_{2}$ components. The lines in the images represents the 0-0 components attributed to Eu³⁺ ions replacing Ba²⁺ ions in the Ba₂SiO₄ network. In the 5 % doped sample, is not possible to see the 0-0 component for the Eu³⁺-O²⁻ associate probably because the 0-2 lines is very week, since it is governed by a different transition mechanism.

Figure ES8. (a) Luminescence decay curves fixing excitation wavelength at 394 nm $({}^{7}F_{0} \rightarrow {}^{5}L_{6})$ and emission wavelength at 614 nm $({}^{5}D_{0} \rightarrow {}^{7}F_{2})$, and (b) *ln* of intensity, for all Ba₂SiO₄:Eu³⁺ samples.

Figure ES9. CIE chromaticity diagram for $Ba_2SiO_4:Eu^{3+}(1-5)$ obtained from Spectra Lux software², and the emission spectra collected under 250 nm excitation measured at room temperature.

¹ A. L. Patterson, *Phys. Rev.*, **56**, 1939, 978.

²P.A. Santa-cruz, F.S. Teles. Spectra Lux Software. Versão 2.0 RENAMI, U. Federal de Pernambuco, 2003.