Supplementary Material

Temporal dynamics of bacterial communities and predicted nitrogen metabolism genes in a full-scale wastewater treatment plant

Xiao-Yan Fan, Jing-Feng Gao *, Kai-Ling Pan, Ding-Chang Li, Hui-Hui Dai, Xing Li

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China

*Corresponding author: Dr. Jingfeng Gao, E-mail: gao.jingfeng@bjut.edu.cn or gao158@gmail.com, Tel.: 0086-10-67391918; Fax: 0086-10-67391983.

Tel: +86-10-6739-2627(office); Fax: +86-10-6739-1983 E-mail: gao.jingfeng@bjut.edu.cn or gao158@gmail.com

Contents

1. Tables

Table S1Detailed information concerning variation of water quality indexes (WQI),operational parameters (OP) and temperature (T) during sampling period.

Table S2Primers, thermal programs and standard curves of qPCR in this study.

Table S3The KOs of nitrogen cycle.

Table S4Raw and effective reads, plus numbers of OTUs, Good's coverage, Shannon,Chao1, ACE, and Simpson of the five Groups.

2. Figures

Fig. S1 Bacterial community difference across 12 activated sludge samples collected from different seasons as revealed by cluster analysis.

Fig. S2 Shifts in bacterial functions as revealed by PCoA.

Fig. S3 Relative abundance of different bacterial functions across 12 activated sludge samples.

Fig. S4 Top 35 potential functions of the microbes in different Groups.

Samples	Influent(mg/L)			Effluent(mg/L)			MLSS	SRT	HRT	Т	DO
ID	BOD	COD	NH_4^+-N	BOD	COD	NH_4^+-N	(mg/L)	(d)	(h)	(°C)	(mg/L)
YF.1	45	91	12	1.4	4.3	0.1	3925	15	10.1	13.5	0.3
YF.2	66	104	16	1.6	11.5	0.1	3441	16.5	10	13	0.3
YF.3	47	89	14	2.4	10.8	0.2	4480	15.3	11	15	0.5
YF.4	62	97	14	1.4	15.9	0.2	4886	15.5	10	17.5	0.2
YF.5	43	81	18	2.6	8.7	0.1	3236	15.3	10.5	21.6	0.4
YF.6	40	73	21	1.5	11.5	0.2	3152	15.6	10.5	23.8	0.3
YF.7	71	103	15	1.2	5.4	0.1	4194	15	10.7	26	0.5
YF.8	78	152	24	2.1	10.6	0.1	5293	15	10	25.5	0.5
YF.9	42	65	18	1.4	16.1	0.1	2829	15.4	10.2	23.5	0.3
YF.10	69	100	25	1.2	17.9	0.9	3634	15.5	10	20	0.2
YF.11	56	80	33	3.2	19.5	0.1	2877	15.5	10.1	17.5	0.3
YF.12	150	264	51	3.2	25.7	0.2	4318	15.3	10.5	14	0.3

Table S1 Detailed information concerning variation of water quality index (WQI), operational parameters
(OP) and temperature (T) during sampling period.

Abbreviations: MLSS: mixed liquor suspended solids; SRT: sludge retention time; HRT: hydraulic retention Time; T: Temperature; DO: dissolved oxygen.

Target	Target	Sequence (5'-3') of parimer pairs	Thermal program	Linear range of	\mathbb{R}^2	Efficiency	Reference
prokaryote	gene			standard curves		(%)	
				(copies µl ⁻¹)			
Total	16S	Uni1055F: ATGGCTGTCGTCAGCT	10 min at 95°C, 40 cycles of 45 s at	1.38×(10 ² -10 ⁹)	0.998	90.0%	1
bacteria	rRNA	1392R: ACGGGCGGTGTGTAC	95°C, 30 s at 53°C , and 30 s at 72°C				
Total	16S	934f: GAATTGGCGGGGGGGGGGCAC	10 min at 95°C, 40 cycles of 45 s at	1.65×(10 ² -10 ⁹)	0.998	107.7%	2
archaea	rRNA	1040r: GGCCATGCACCWCCTCTC	95°C, 30 s at 59°C , and 30 s at 72°C				
AOA	amoA	Arch-amoA26F:GACTACATMTTCTAYACWGAYTGGGC	10 min at 95°C, 40 cycles of 45 s at	2.88×(10 ² -10 ⁹)	0.999	90.5%	3
		Arch-amo417R: GGKGTCATRTATGGWGGYAAYGTTGG	95°C, 30 s at 56°C , and 45 s at 72°C				
AOB	amoA	amoA-1F: GGGGTTTCTACTGGTGGT	10 min at 95°C, 40 cycles of 45 s at	3.25×(10 ¹ -10 ⁸)	0.996	99.2%	4
		amoA-2R: CCCCTCKGSAAAGCCTTCTTC	95°C, 30 s at 58°C , and 30 s at 72°C				
Comammox	amoA	Nino_amoA_19F:ATAATCAAAGCCGCCAAGTTGC	10 min at 95°C, 40 cycles of 45 s at	6.87×(10 ¹ -10 ⁸)	0.999	92.1%	5
(Ca. Nitrospira		Nino_amoA_252R:AACGGCTGACGATAATTGACC	95°C, 30 s at 60°C , and 30 s at 72°C				
inopinata)							
Nitrospria	16S	Nsr1113F: CCTGCTTTCAGTTGCTACCG	10 min at 95°C, 40 cycles of 45 s at	5.72×(10 ¹ -10 ⁸)	0.998	95.0%	6
	rRNA	Nsr1264R: GTTTGCAGCGCTTTGTACCG	95°C, 30s at 65°C , and 30 s at 72°C				
Denitrifying	nirS	nirSCd3aFm: AACGYSAAGGARACSGG	10 min at 95°C, 40 cycles of 45 s at	1.48×(10 ¹ -10 ⁸)	0.994	112.0%	7
bacteria		nirSR3cdm: GASTTCGGRTGSGTCTTSAYGAA	95°C, 30 s at 60°C , and 30 s at 72°C				
Denitrifying	nirK	nirK876: ATYGGCGGVCAYGGCGA	10 min at 95°C, 40 cycles of 45 s at	5.13×(10 ¹ -10 ⁸)	0.996	96.0%	8
bacteria		nirK1040: GCCTCGATCAGRTTRTGGTT	95°C, 30 s at 60°C , and 30 s at 72°C				

Table S2Primers, thermal programs and standard curves of qPCR in this study.

Table S3	The KOs of nitrogen	cycle
----------	---------------------	-------

KOs	Genes
Nitrogen fixation	
K02588	<i>nifH</i> ; nitrogenase iron protein NifH
K02586	nifD; nitrogenase molybdenum-iron protein alpha chain
K02591	nifK; nitrogenase molybdenum-iron protein beta chain
K00531	anfG; nitrogenase delta subunit
Assimilatory nitrate reduction	
K00367	narB; ferredoxin-nitrate reductase
K10534	<i>NR(NAR)</i> ; nitrate reductase (NAD(P)H)
K00372	nasA; assimilatory nitrate reductase catalytic subunit
K00360	nasB; assimilatory nitrate reductase electron transfer subunit
K00366	<i>nirA</i> ; ferredoxin-nitrite reductase
K17877	<i>NIT-6</i> ; nitrite reductase (NAD(P)H)
Dissimilatory nitrate reduction	
K00362	nirB; nitrite reductase (NADH) large subunit
K00363	nirD; nitrite reductase (NADH) small subunit
K03385	<i>nrfA</i> ; nitrite reductase (cytochrome c-552)
K00374*	<i>narI, narV</i> ; nitrate reductase gamma subunit
K15876	nrfH; cytochrome c nitrite reductase small subunit
Denitrification	
K00370*	<i>narG, narZ, nxrA</i> ; nitrate reductase / nitrite oxidoreductase, alpha subunit
K00371*	narH, narY, nxrB;nitrate reductase / nitrite oxidoreductase, beta subunit
K02567*	<i>napA</i> ; periplasmic nitrate reductase NapA
K02568*	napB; cytochrome c-type protein NapB
K00368	<i>nirK</i> ; nitrite reductase (NO-forming)
K15864	nirS; nitrite reductase (NO-forming) / hydroxylamine reductase
K04561	norB; nitric oxide reductase subunit B
K02305	norC; nitric oxide reductase subunit C
K15877	CYP55;fungal nitric oxide reductase
K00376	nosZ; nitrous-oxide reductase
Nitrification	
K10944	pmoA-amoA:methane/ammonia monooxygenase subunit A
K10945	pmoB-amoB; methane/ammonia monooxygenase subunit B
K10946	pmoC-amoC; methane/ammonia monooxygenase subunit C
K10535	hao (hydroxylamine dehydrogenase)

Asterisks (*) indicate KOs that are classified under both the dissimilatory nitrate reduction and denitrification category in the KEGG database, but K00374 were classified as dissimilatory nitrate reduction, and the other four KOs (K00370, K00371, K02567 and K02568) were classified as denitrification for all the analyses herein.

	Sequences				3% cut off						
Group	Sample ID	Trimmed sequences	Effective sequences	Effective sequences proportion/ (%)	Sequence numbers	OTUs	Good coverages	ACE	Chao1	Shannon	Simpson
Group I	YF.9	41724	39233	94.03	28230	1563	96.44%	1799.31	1812.86	5.53	0.025
Group II	YF.11	33157	29308	88.39	28230	798	98.16%	959.62	987.42	4.88	0.021
Group III	YF.2	37445	35234	94.10	28230	1557	96.40%	1831.68	1845.41	5.77	0.012
Group IV	YF.1, YF.3, YF.4, YF.5, YF.6, YF.8, YF.10, YF.12	36543± 4572	34403± 4431	94.11±1.05	28230	1650 ±58	96.24% ±0.20%	1889.26 ±64.79	1919.39 ±71.40	6.01± 0.11	0.007 ±0.001
Group V	YF.7	35236	33331	94.59	28230	1600	96.26%	1873.87	1906.51	5.82	0.010

Table S4Raw and effective reads, plus numbers of OTUs, Good's coverage, Shannon, Chao1, ACE, and Simpson of the five Groups

Fig. S1 Bacterial community difference across 12 activated sludge samples collected from different seasons as revealed by cluster analysis.

Fig. S2 Shifts in bacterial functions as revealed by PCoA.

Fig. S3 Relative abundance of different bacterial functions across 12 activated sludge samples.

Fig. S4 Top 35 potential functions of the microbes in different Groups.

References:

- 1. M. J. Ferris, G. Muyzer and D. M. Ward, Appl. Environ. Microbiol., 1996, 62, 340-346.
- 2. G. C. Baker, J. J. Smith and D. A. Cowan, J. Microbiol. Methods, 2003, 55, 541-555.
- C. A. Francis, K. J. Roberts, J. M. Beman, A. E. Santoro and B. B. Oakley, *Proc. Natl. Acad. Sci.*, 2005, **102**, 14683-14688.
- 4. U. Purkhold, A. Pommerening-Roser, S. Juretschko, M. C. Schmid, H. Koops and M. Wagner, *Appl. Environ. Microbiol.*, 2000, **66**, 5368-5382.
- H. Daims, E. V. Lebedeva, P. Pjevac, P. Han, C. Herbold, M. Albertsen, N. Jehmlich, M. Palatinszky, J. Vierheilig, A. Bulaev, R. H. Kirkegaard, M. von Bergen, T. Rattei, B. Bendinger, P. H. Nielsen and M. Wagner, *Nature*, 2015, **528**, 504-509.
- 6. H. M. Dionisi, A. C. Layton, G. Harms, I. R. Gregory, K. G. Robinson and G. S. Sayler, *Appl. Environ. Microbiol.*, 2002, **68**, 245-253.
- 7. S. Henry, E. Baudoin, J. C. Lopez-Gutierrez, F. Martin-Laurent, A. Brauman and L. Philippot, *J. Microbiol. Methods*, 2004, **59**, 327-335.
- 8. E. Kandeler, K. Deiglmayr, D. Tscherko, D. Bru and L. Philippot, *Appl. Environ. Microbiol.*, 2006, **72**, 5957-5962.