Characterization of the Adsorption Dynamics of Trisodium Citrate on Gold in Water Solution

Susanna Monti,*^{,†} Giovanni Barcaro^{\$}, Luca Sementa^{\$}, Vincenzo Carravetta^{\$} and Hans Ågren^{‡,%}

⁺CNR-ICCOM, Institute of Chemistry of Organometallic Compounds, via G. Moruzzi 1,

I-56124 Pisa, Italy, ^{\$}CNR-IPCF, Institute of Chemical and Physical Processes, via G. Moruzzi 1, I-

56124 Pisa, Italy, [‡] KTH Royal Institute of Technology, School of Biotechnology, Division of

Theoretical Chemistry and Biology, S-106 91 Stockholm, Sweden and

[%]Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, Svobodny pr. 79, 660041 Krasnoyarsk, Russia

E-mail: sapeptides@gmail.com

Table of Contents

Figure 1S. Speciation of citric acid as a function of the pH. The curve trends have been extracted from the reference cited in the manuscript. H_3 cit is the completed protonated citric acid and cit(-3) the deprotonated molecule.

Figure 2S. Evolution of the potential energy of the whole system during equilibration (around 200 ps) and the initial picoseconds of the production stage.

Figure 3S. Distribution of the Au-O(citrate) minimum distances (basic pH).

Figure 1S. Speciation of citric acid as a function of the pH. The curve trends have been extracted from the reference cited in the manuscript. H_3 cit is the completed protonated citric acid and cit(-3) the deprotonated molecule.

Figure 2S. Evolution of the potential energy of the whole system during equilibration (around 200 ps) and the initial picoseconds of the production stage.

Figure 3S. Distribution of the Au-O(citrate) minimum distances (basic pH).