Electronic Supplementary Information

Natural terpenoid glycosides with *in vitro/vivo* antithrombotic profiles from the leaves of *Crataegus pinnatifida*

Pin-Yi Gao,^{a,b} Ling-Zhi Li,^a* Ke-Chun Liu,^c Chen Sun,^c Xue Sun,^a Ya-Nan Wu,^a Shao-Jiang Song^a*

^a Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China

^b College of Pharmaceutical and Biotechnology Engineering, Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China

^c Biology Institute of Shandong Academy of Sciences, Jinan, People's Republic of China

*Corresponding author. Tel.: +86-24-23986088. Fax: +86-24-23986510. (S.-J. Song). E-mail addresses: <u>songsj99@163.com</u>. (S.-J. Song).

Experiment section:

SI-E.1. Extraction and isolation

- SI-E.2. Characteristic data of compounds 1-15 and 2D NMR correlations of 1-4
- **SI-E.3.** Acid Hydrolysis of **1-4**
- SI-E.4. Preparation of the (R)- and (S)-MTPA Esters of 4a.
- SI-E.5. ¹³C NMR calculation section
- SI-E.6. Evaluation of antiplatelet activity in rat PRP.
- SI-E.7. Antithrombotic assay using a transgenic zebrafish system

Table

- SI-table 1. Conformations of 1a were Obtained after the Optimization.
- SI-table 2. Conformations of 2a were Obtained after the Optimization.
- **SI-table 3.** Deviations between the calculated and experimental ¹³C NMR chemical shifts for stereoisomers (2*S*, 2*R*) of **2**
- **SI-table 4.** Deviations between the calculated and experimental ¹³C NMR chemical shifts for stereoisomers (2*R/5R/6R*, 2*R/5R/6S*) of **4a**.
- **SI-table 5.** Deviations between the calculated and experimental ¹³C NMR chemical shifts for stereoisomers (2*R*/5*S*/6*R*, 2*R*/5*S*/6*S*) of **4a**.
- SI-table 6. Calculated Boltzmann distributions and optical rotations for each conformer of 4 and 3.

Spectra figure

S1. ¹H NMR spectrum (600MHz, DMSO-*d6*) of compound 1 S2. ¹³C NMR spectrum (150MHz, DMSO-*d6*) of compound 1 **S3.** HSQC spectrum (600MHz, DMSO-*d6*) of compound 1 S4.HMBC spectrum (600MHz, DMSO-d6) of compound 1 S5. NOESY spectrum (600MHz, DMSO-d6) of compound 1 **S6.** The HREIMS spectrum of compound **1** S7. ¹H NMR spectrum (600MHz, DMSO-*d6*) of compound 2 S8. ¹³C NMR spectrum (150MHz, DMSO-*d6*) of compound 2 **S9.** HSQC spectrum (600MHz, DMSO-*d6*) of compound 2 S10. HMBC spectrum (600MHz, DMSO-d6) of compound 2 S11. NOESY spectrum (600MHz, DMSO-d6) of compound 2 **S12.** The HREIMS spectrum of compound **2** S13. ¹H NMR spectrum (600MHz, DMSO-*d6*) of compound 3 S14. ¹³C NMR spectrum (150MHz, DMSO-*d6*) of compound 3 S15. H-H COSY spectrum (600MHz, DMSO-d6) of compound 3 **S16.** HMBC spectrum (600MHz, DMSO-*d6*) of compound **3** S17. NOESY spectrum (600MHz, DMSO-d6) of compound 3 **S18.** The HREIMS spectrum of compound **3** S19. ¹H NMR spectrum (600MHz, DMSO-*d6*) of compound 4 S20. ¹³C NMR spectrum (150MHz, DMSO-d6) of compound 4 S21. HSQC spectrum (600MHz, DMSO-d6) of compound 4 S22. H-H COSY spectrum (600MHz, DMSO-d6) of compound 4 S23.The HREIMS spectrum of compound 4 S24. Rh₂(OCOCF₃)₄.induced CD spectrum of 1a S25. $Rh_2(OCOCF_3)_4$ induced CD spectrum of 5

Experiment section:

SI-E.1. Extraction and isolation

SI-figure-1. Extraction and isolation of 1-15

SI-E.2. Characteristic data of compounds 1-15 and 2D NMR correlations of 1-4

Norhawthornoid A (1): colorless oil; [α]20 D –3.5, (c 0.15, MeOH); UV (MeOH) λ_{max} (log ε)

208 (2.21) nm; ECD (MeOH) λ ($\Delta \epsilon$) 209 (-39.50) nm; see Table 1 for ¹H NMR, ¹³C NMR;

HRESIMS m/z: 483.2582 [M + H]⁺ (calcd. C₂₅H₃₉O₉ 483.2589).

Norhawthornoid B (2): colorless oil; $[\alpha]20 \text{ D} - 8.5$, (*c* 0.12, MeOH); UV (MeOH) λ_{max} (log ε) 228 (2.21) nm; ECD (MeOH) λ ($\Delta \varepsilon$) 230 (-9.80) nm; see Table 1 for ¹H NMR, ¹³C NMR; HRESIMS *m/z*: 471.2588 [M + H]⁺ (calcd. C₂₄H₃₈O₉ 471.2589).

Pinnatifidanoside F (3): colorless oil; $[\alpha]20 \text{ D} -2.8$, (*c* 0.4, MeOH); see Table 2 for ¹H NMR, ¹³C NMR; HRESIMS *m/z*: 401.2536 [M + H]⁺ (calcd. C₂₁H₃₇O₇ 401.2534). *Pinnatifidanoside G (4):* colorless oil; $[\alpha]$ 20 D –7.5, (*c* 0.2, MeOH); see Table 2 for ¹H NMR,

¹³C NMR; HRESIMS m/z: 419.2636 [M + H]⁺ (calcd. C₂₁H₃₉O₈ 419.2639).

Shnyegenin B (*5*): Colourless oil; ESI-MS m/z: 277 [M+Na]⁺; ¹H NMR (DMSO-*d*₆, 300 MHz) $\delta_{\rm H}$ 5.19 (1H, *J* = 17.1, 1.8 Hz, H-1a), 5.04 (1H, *J* = 10.8, 1.8 Hz, H-1b), 5.91 (1H, *J* = 17.1, 10.8 Hz, H-2), 2.20 (1H, m, H-4a), 2.21 (1H, m, H-4b) 5.57 (1H, *J* = 7.2, 3.9 Hz, H-5), 5.58 (1H, *J* = 7.2 Hz, H-6),1.69 (1H, m, H-8a), 1.89 (1H, m, H-8b), 1.82 (1H, m, H-9a), 1.82 (1H, m, H-9b), 3.76 (1H, *J* = 6.6 Hz, H-10), 1.26 (3H, s, H-12), 1.31 (3H, s, H-13), 1.21 (3H, s, H-14) and 1.12 (3H, s, H-15). ¹³C-NMR (DMSO-*d*₆, 75 MHz): $\delta_{\rm C}$ 111.9 (C-1), 144.7 (C-2), 72.6 (C-3), 45.5 (C-4), 122.1 (C-5), 139.5 (C-6), 82.6 (C-7), 37.8 (C-8), 26.3 (C-9), 85.4 (C-10), 71.1 (C-11), 27.1 (C-12), 27.1 (C-13), 27.1 (C-14), 24.1 (C-15).

Shnyeside B (6): Colourless oil; ESI-MS m/z: 439 [M+Na]⁺; ¹H NMR (DMSO-*d*₆, 300 MHz) $\delta_{\rm H}$ 5.10 (1H, *J* = 17.1, 1.8 Hz, H-1a), 4.91 (1H, *J* = 10.8, 1.8 Hz, H-1b), 5.84 (1H, *J* = 17.1, 10.8 Hz, H-2), 2.10 (1H, *J* = 3.9 Hz, H-4a), 2.10 (1H, *J* = 3.9 Hz, H-4b) 5.54 (1H, *J* = 7.2, 3.9 Hz, H-5), 5.53 (1H, *J* = 7.2 Hz, H-6),1.67 (1H, m, H-8a), 1.67 (1H, m, H-8b), 1.81 (1H, m, H-9a), 1.91 (1H, m, H-9b), 3.86 (1H, *J* = 6.6 Hz, H-10), 1.09 (3H, s, H-12), 1.16 (3H, s, H-13), 1.16 (3H, s, H-14), 1.07 (3H, s, H-15), 4.35 (1H, *J* = 7.8 Hz, H-1'), 2.84 (1H, *J* = 7.8 Hz, H-2'), 3.10 (1H, *J* = 7.8 Hz, H-3'), 3.00 (1H, m, H-4'), 3.02 (1H, m, H-5'), 3.35 (1H, *J* = 10.8 Hz, H-6'a), 3.62 (1H, *J* = 10.8 Hz, H-6'b). ¹³C-NMR (DMSO-*d*₆, 75 MHz): $\delta_{\rm C}$ 111.3 (C-1), 146.4 (C-2), 71.9 (C-3), 45.5 (C-4), 123.0 (C-5), 139.4 (C-6), 82.5 (C-7), 38.1 (C-8), 26.7 (C-9), 83.9 (C-10), 78.3 (C-11), 27.3 (C-12), 26.4 (C-13), 24.0 (C-14), 22.2 (C-15), 97.6 (C-1'), 74.0 (C-2'), 77.5 (C-3'), 70.6 (C-4'), 77.0 (C-5'), 61.6 (C-6').

SI-figure-2. HMBC correlations (arrows) of 1-3, and ¹H-¹H COSY (bold lines) of 4

(3S,5R,6R,7E,9S)-megastiman-7-ene-3,5,6,9-tetrol (7): Colourless oil; ¹H NMR (DMSO-*d*₆, 300 MHz) δ_H 5.90 (1H, d, *J* = 15.9 Hz), 5.66 (1H, d, *J* = 15.9 Hz), 1.08 (3H, s), 0.99 (3H, s), 0.71 (3H, s), 1.13 (3H, d, *J*=6.3 Hz), 4.15 (1H, m), 3.84 (1H, m). ¹³C-NMR (DMSO-*d*₆, 75 MHz): δ_C 41.2 (C-1), 46.7 (C-2), 63.6 (C-3), 46.2 (C-4), 76.7 (C-5), 77.8 (C-6), 129.9 (C-7), 135.7 (C-8), 67.8 (C-9), 25.5 (C-10), 28.0 (C-11), 26.6 (C-12), 27.8 (C-13).

Euodionosides D (8): Colourless oil; ¹H NMR (DMSO- d_6 , 300 MHz) $\delta_{\rm H}$ 5.97 (1H, d, J = 15.9 Hz), 5.72 (1H, d, J = 15.9 Hz), 1.05 (3H, s), 1.00 (3H, s), 0.72 (3H, s), 1.20 (3H, d, J=6.0 Hz), 4.14 (1H, d, J = 7.8 Hz). ¹³C-NMR (DMSO- d_6 , 75 MHz): $\delta_{\rm C}$ 41.3 (C-1), 46.6 (C-2), 63.5 (C-3), 46.0 (C-4), 77.0 (C-5), 77.5 (C-6), 133.5 (C-7), 132.6 (C-8), 76.6 (C-9), 22.3 (C-10), 28.0 (C-11), 26.6 (C-12), 27.9 (C-13), 101.7 (C-1'), 74.5 (C-2'), 77.7 (C-3'), 71.0 (C-4'), 77.7 (C-5'), 61.9 (C-6').

(6R,9R)-3-oxo- α -ionol-9-O- β -D-glucopyranoside (**9**): Colourless oil; ¹H NMR (DMSO- d_6 , 300 MHz) $\delta_{\rm H}$ 5.79 (1H, s), 5.66 (1H, dd, J = 15.0, 6.6 Hz), 5.56 (1H, dd, J = 15.0, 9.6 Hz), 1.83 (3H, s), 0.93 (3H, s), 0.89 (3H, s), 1.17 (3H, d, J = 6.6 Hz), 4.16 (1H, d, J = 7.8 Hz).

(6S, 7E, 9R)-6,9-Dihydroxy-4,7-megastiymadien-3-one-9-O-[β -D-xylopyranosy-(1-6) β -D-glucopyranoside] (10): Colourless oil; ¹H NMR (DMSO- d_6 , 300 MHz) δ_H 5.79 (1H, s), 5.68 (1H, dd, J = 15.3, 6.0 Hz), 5.56 (1H, dd, J = 15.3, 9.0 Hz), 1.84 (3H, s), 0.94 (3H, s), 0.90 (3H, s), 1.18

(3H, d, J=6.3 Hz), 4.18 (1H, d, J = 7.2 Hz), 4.17 (1H, d, J = 7.2 Hz). ¹³C-NMR (DMSO- d_6 , 75 MHz): δ_C 36.5 (C-1), 48.0 (C-2), 199.5 (C-3), 125.7 (C-4), 163.0 (C-5), 55.3 (C-6), 128.1 (C-7), 137.4 (C-8), 76.5 (C-9), 21.5 (C-10), 27.6 (C-11), 28.3 (C-12), 23.8 (C-13), 101.6 (C-1'), 74.4 (C-2'), 77.5 (C-3'), 70.6 (C-4'), 75.3 (C-5'), 69.0 (C-6'), 104.8 (C-1''), 74.2 (C-2''), 77.5 (C-3''), 70.4 (C-4''), 66.5 (C-5'').

Linarionoside A (11): Colourless oil; ¹H NMR (DMSO- d_6 , 300 MHz) $\delta_{\rm H}$ 1.54 (3H, s), 0.97 (3H, s), 0.96 (3H, s), 1.08 (3H, d, *J*=6.0 Hz), 4.17 (1H, d, *J* = 7.5 Hz). ¹³C-NMR (DMSO- d_6 , 75 MHz): $\delta_{\rm C}$ 37.6 (C-1), 48.6 (C-2), 62.9 (C-3), 37.3 (C-4), 124.0 (C-5), 136.6 (C-6), 23.7 (C-7), 42.8 (C-8), 73.7 (C-9), 19.5 (C-10), 28.3 (C-11), 29.6 (C-12), 19.3 (C-13), 100.8 (C-1'), 73.7 (C-2'), 76.9 (C-3'), 70.2 (C-4'), 76.7 (C-5'), 61.2 (C-6').

Linarionoside B (12): Colourless oil; ¹H NMR (DMSO- d_6 , 300 MHz) $\delta_{\rm H}$ 1.57 (3H, s), 0.99 (3H, s), 0.98 (3H, s), 1.04 (3H, d, J=6.0 Hz), 4.25 (1H, d, J = 7.8 Hz). ¹³C-NMR (DMSO- d_6 , 75 MHz): $\delta_{\rm C}$ 39.3 (C-1), 46.8 (C-2), 70.9 (C-3), 38.1 (C-4), 124.0 (C-5), 138.0 (C-6), 24.9 (C-7), 40.9 (C-8), 67.1 (C-9), 20.3 (C-10), 29.0 (C-11), 30.4 (C-12), 24.2 (C-13), 101.4 (C-1'), 74.3 (C-2'), 77.5 (C-3'), 71.0 (C-4'), 77.5 (C-5'), 61.9 (C-6').

Linarionoside C (13): Colourless oil; ¹H NMR (DMSO-*d*₆, 300 MHz) $\delta_{\rm H}$ 1.57 (3H, s), 1.06 (3H, s), 1.03 (3H, s), 1.11 (3H, d, *J*=6.0 Hz), 4.26 (1H, d, *J* = 7.8 Hz), 4.17 (1H, d, *J* = 7.5 Hz). ¹³C-NMR (DMSO-*d*₆, 75 MHz): $\delta_{\rm C}$ 38.1 (C-1), 47.2 (C-2), 71.1 (C-3), 39.5 (C-4), 124.5 (C-5), 138.2 (C-6), 24.5 (C-7), 39.0 (C-8), 74.4 (C-9), 20.2 (C-10), 29.1 (C-11), 30.4 (C-12), 20.4 (C-13), 101.6 (C-1'), 74.4 (C-2'), 77.6 (C-3'), 71.1 (C-4'), 77.6 (C-5'), 62.1 (C-6'), 101.6 (C-1''), 74.4 (C-2''), 77.6 (C-3''), 71.0 (C-4''), 77.6 (C-5''), 62.1 (C-6'').

3,9-dihydroxy-5-megastigmen-3-O-[β -D-xylopyranosy-(1-6) β -D-glucopyranoside] (14): Colourless oil; ¹H NMR (DMSO- d_6 , 300 MHz) $\delta_{\rm H}$ 1.57 (3H, s), 0.98 (6H, s), 1.04 (3H, d, J=6.0 Hz), 4.24 (1H, d, J = 7.8 Hz), 4.20 (1H, d, J = 7.5 Hz). ¹³C-NMR (DMSO- d_6 , 75 MHz): $\delta_{\rm C}$ 37.8 (C-1), 46.5 (C-2), 71.0 (C-3), 39.6 (C-4), 123.7 (C-5), 137.6 (C-6), 24.6 (C-7), 40.1 (C-8), 66.8 (C-9), 23.9 (C-10), 28.8 (C-11), 30.1 (C-12), 20.0 (C-13), 101.1 (C-1'), 73.9 (C-2'), 77.1 (C-3'), 70.5 (C-4'), 76.1 (C-5'), 68.8 (C-6'), 104.4 (C-1''), 73.9 (C-2''), 77.0 (C-3''), 70.1 (C-4''), 66.1 (C-5'').

Pinnatifidanoside C (15): Colourless oil; ¹H NMR (DMSO-*d*₆, 300 MHz) $\delta_{\rm H}$ 2.07 (3H, s), 1.54 (3H, s), 0.98 (6H, s), 4.24 (1H, d, *J* = 8.1 Hz), 4.20 (1H, d, *J* = 7.5 Hz). ¹³C-NMR (DMSO-*d*₆, 75 MHz): $\delta_{\rm C}$ 37.3 (C-1), 45.9 (C-2), 70.0 (C-3), 38.0 (C-4), 124.3 (C-5), 136.2 (C-6), 21.4 (C-7), 43.6 (C-8), 208.2 (C-9), 29.7 (C-10), 28.4 (C-11), 29.4 (C-12), 19.5 (C-13), 103.9 (C-1'), 73.4 (C-2'), 76.7 (C-3'), 69.6 (C-4'), 75.8 (C-5'), 68.3 (C-6'), 100.5 (C-1''), 73.4 (C-2''), 76.6 (C-3''), 70.3 (C-4''), 65.7 (C-5'').

SI-E.3. Acid Hydrolysis of 1-4.

SI-figure-3. Retention times for authentic samples after acid hydrolysis of 1-4

SI-E.4. Preparation of the (R)- and (S)-MTPA Esters of 4a

SI-figure-4. $\Delta \delta_{\rm H}$ values for the MTPA esters of **4a**

SI-E.5. ¹³*C* NMR calculation section (SI-table 3 and 4.)

After optimization of the major conformers (>98%) was performed using the Gaussian 09 program at B3LYP/6-31G(d) level. Computed chemical shifts reported in this study were determined using the GIAO method in Gaussian 09 at the B3LYP/6-311+G(d) level of theory. The scaled calculated ¹³C NMR chemical shifts were obtained from the following: $\delta_{\text{scal.calc.}} = (\delta_{\text{calc.}} - \text{intercept})/\text{slope.}^{1-3}$ The results were evaluated in terms of R^2 , MaxDev and AveDev. Among them, R^2 is its coefficient of determination. MaxDev is the maximum absolute deviation with respect to the experimental chemical shifts $\delta_{\text{exp.}}$. AveDev is the average absolute deviation, computed as (1/n) $\sum_{i=1}^{n} |\delta_{\text{scale.calc.}} - \delta_{\text{exp.}}|$.

SI-figure-5. Correlation between experimental and calculated ¹³C chemical shifts of stereoisomers (2S left, 2R right) of 2

SI-figure-6. Correlation between experimental and calculated ¹³C chemical shifts of stereoisomers (2R/5R/6R left, 2R/5R/6S right) of **4a**

SI-figure-7. Correlation between experimental and calculated ¹³C chemical shifts of stereoisomers (2R/5S/6R left, 2R/5S/6S right) of **4a**

- (1) Barone, G.; Gomez-Paloma, L.; Duca, D.; Silvestri, A.; Riccio, R.; Bifulco, G. Chem. Eur. J. 2002, 8, 3233-3239.
- (2) Tang, Y.; Xue, Y. B.; Du, G.; Wang, J. P.; Liu, J. J.; Sun, B.; Li, X. N.; Yao, G. M.; Luo, Z. W.; Zhang, Y. H. *Angew. Chem. Int. Ed.* **2016**, *55*, 4069–4073.
- (3) Barone, G.; Duca, D.; Silvestri, A.; Gomez-Paloma, L.; Riccio, R.; Bifulco, G. Chem. Eur. J. 2002, 8, 3240-3245.

SI-E.6. Evaluation of Antiplatelet Activity in Rat PRP.

SI-figure-8. The platelet the aggregation model induced by adenosine diphosphate (ADP)

SI-E.7. Antithrombotic assay using a transgenic zebrafish system

SI-figure-9. The FeCl₃-induced thrombosis model in the transgenic zebrafish system

1a			1b		
no.	conformer	population (%)	no.	conformer	population (%)
1a-1		40.8	1a-7		0.8
1a-2		28.1	1a-8		0.6
1a-3		12.9	1a-9		0.4
1a-4		9.8	1a-10		0.3
1a-5		3.3	1a-11		0.3

SI-table 1. Conformations of 1a were Obtained after the Optimization.

SI-table 2. Conformations of 2a were obtained after the optimization.

EXL		28				2R		
	calc.	scal.calc.	Δδ	$ \Delta \delta $	calc.	scal.calc.	Δδ	$ \Delta \delta $
12.7	13.4	12.0	0.7	0.7	13.8	11.9	0.8	0.8
19.5	14.2	12.8	6.7	6.7	14.4	12.4	7.1	7.1
22.5	16.2	14.6	7.9	7.9	17.7	15.5	7.0	7.0
23.8	18.3	16.6	7.2	7.2	19.9	17.6	6.2	6.2
24	36.3	33.3	-9.3	9.3	35.7	32.3	-8.3	8.3
37.1	39.0	35.8	1.3	1.3	39.0	35.5	1.6	1.6
37.1	41.3	37.9	-0.8	0.8	42.1	38.3	-1.2	1.2
38.6	54.7	50.4	-11.8	11.8	56.6	51.9	-13.3	13.3
46.7	58.0	53.5	-6.8	6.8	58.5	53.6	-6.9	6.9
58.2	67.4	62.2	-4.0	4.0	66.8	61.4	-3.2	3.2
61.9	68.4	63.2	-1.3	1.3	68.3	62.7	-0.8	0.8
64.6	69.3	64.0	0.6	0.6	70.3	64.6	0.0	0.0
70.8	76.1	70.3	0.5	0.5	75.7	69.7	1.1	1.1
74.3	79.7	73.7	0.6	0.6	78.3	72.2	2.1	2.1
75.3	80.1	74.1	1.2	1.2	80.3	74.0	1.3	1.3
77.5	80.9	74.8	2.7	2.7	80.9	74.6	2.9	2.9
77.5	82.1	75.9	1.6	1.6	82.3	75.8	1.7	1.7
86	101.8	94.3	-8.3	8.3	102.3	94.5	-8.5	8.5
103.4	109.3	101.2	2.2	2.2	109.2	101.0	2.4	2.4
118.8	128.2	118.8	0.0	0.0	127.7	118.3	0.5	0.5
133.6	141.0	130.7	2.9	2.9	140.6	130.3	3.3	3.3
134.4	145.0	134.4	0.0	0.0	145.9	135.3	-0.9	0.9
141.7	148.0	137.3	4.4	4.4	148.9	138.1	3.6	3.6
179.5	191.7	177.9	1.6	1.6	191.7	178.0	1.5	1.5
			AveDev	3.5			AveDev	3.6
			MaxDev	11.8			MaxDev	13.3
			R ²	0.9875			R ²	0.9875

SI-table 3 Deviations between the calculated and experimental ¹³C NMR chemical shifts for stereoisomers (2*S*, 2*R*) of **2**

		Ster	eoisomers	$(2\Lambda/J\Lambda/0\Lambda,$	$2\pi/3\pi/03$	01 4a		
EXL		2 <i>R/5R/6R</i>				2R/5R/6S		
	calc.	scal.calc.	Δδ	$ \Delta \delta $	calc.	scal.calc.	Δδ	$ \Delta \delta $
22.9	21.1	18.9	-4.0	4.0	23.2	21.0	-1.9	1.9
23.3	23.8	21.5	-1.8	1.8	24.9	22.5	-0.8	0.8
23.3	25.9	23.4	0.1	0.1	25.9	23.4	0.1	0.1
24.6	26.8	24.3	-0.3	0.3	27.2	24.6	0.0	0.0
24.6	27.7	25.1	0.5	0.5	28.3	25.6	1.0	1.0
26.3	29.3	26.5	0.2	0.2	29.8	27.1	0.8	0.8
26.4	30.7	27.9	1.5	1.5	30.9	28.1	1.7	1.7
30.8	35.2	32.0	1.2	1.2	34.1	31.0	0.2	0.2
37.6	41.6	37.9	0.3	0.3	37.2	33.9	-3.7	3.7
42.6	50.1	45.7	3.1	3.1	49.2	45.0	2.4	2.4
71.1	78.5	71.9	0.8	0.8	78.0	71.5	0.4	0.4
72.1	80.8	74.0	1.9	1.9	81.2	74.5	2.4	2.4
78.4	83.9	76.9	-1.5	1.5	84.2	77.2	-1.2	1.2
121.0	129.0	118.5	-2.5	2.5	128.5	118.1	-2.9	2.9
132.2	144.6	132.9	0.7	0.7	145.4	133.7	1.5	1.5
			AveDev	1.3			AveDev	1.4
			MaxDev	4.0			MaxDev	3.7
			R ²	0.9973			R ²	0.9973

SI-table 4 Deviations between the calculated and experimental ¹³C NMR chemical shifts for stereoisomers (2R/5R/6R, 2R/5R/6S) of **4a**

		ster	eoisomers	(2K/3S/0K,	2K/3S/0S	01 4a		
EXL		2 <i>R/5S/6R</i>				2R/5S/6S		
	calc.	scal.calc.	Δδ	$ \Delta \delta $	calc.	scal.calc.	Δδ	$ \Delta \delta $
22.9	22.3	19.8	-3.1	3.1	23.4	21.2	-1.7	1.7
23.3	25.3	22.6	-0.7	0.7	25.2	22.9	-0.4	0.4
23.3	26.6	23.9	0.6	0.6	25.6	23.3	0.0	0.0
24.6	27.9	25.0	0.4	0.4	26.0	23.6	-1.0	1.0
24.6	29.3	26.3	1.7	1.7	27.6	25.1	0.5	0.5
26.3	29.9	26.9	0.6	0.6	31.0	28.2	1.9	1.9
26.4	30.8	27.8	1.4	1.4	31.2	28.4	2.0	2.0
30.8	32.9	29.7	-1.1	1.1	33.9	30.9	0.1	0.1
37.6	36.3	32.8	-4.8	4.8	40.1	36.5	-1.1	1.1
42.6	52.5	47.8	5.2	5.2	44.9	41.0	-1.6	1.6
71.1	80.3	73.6	2.5	2.5	78.2	71.5	0.4	0.4
72.1	81.1	74.2	2.1	2.1	82.6	75.5	3.4	3.4
78.4	83.2	76.2	-2.2	2.2	84.4	77.1	-1.3	1.3
121.0	127.1	116.8	-4.2	4.2	129.9	118.9	-2.1	2.1
132.2	145.5	133.8	1.6	1.6	145.4	133.1	0.9	0.9
			AveDev	2.1			AveDev	1.2
			MaxDev	5.2			MaxDev	3.4
			\mathbb{R}^2	0.9941			\mathbb{R}^2	0.9980

SI-table 5. Deviations between the calculated and experimental ¹³C NMR chemical shifts for stereoisomers (2R/5S/6R, 2R/5S/6S) of **4a**

Co	mpound 4 (2R,	5S,6S)	Compound 3 (2R,5R,6S)				
Conformer	Optical rotation	Boltzmann distribution	Conformer	Optical rotation	Boltzmann distribution		
1	-18.13	0.602	1	-18.13	0.602		
2	-25	0.329	2	-25	0.329		
3	10.07	0.011	3	10.07	0.011		
4	-37.48	0.01	4	-37.48	0.01		
5	-52.23	0.008	5	-52.23	0.008		
6	-8.89	0.006	6	-8.89	0.006		
7	-55.86	0.006	7	-55.86	0.006		
8	-6.5	0.005	8	-6.5	0.005		
9	-45.14	0.004	9	-45.14	0.004		
10	-73.72	0.004	10	-73.72	0.004		
11	-123.89	0.003	11	-123.89	0.003		
12	-102.1	0.002					
13	-81.32	0.002					
14	-20.78	0.002					
15	-46.69	0.001					
16	-3.19	0.001					
17	-52.75	0.001					
18	-31.32	0.001					
19	-88.4	0.001					
20	-0.42	0.001					
21	-51.66	0.001					
Weighted	-21.77		Weighted	-8.68			
optical			optical				
rotation			rotation				

SI-table 6. Calculated Boltzmann distributions and optical rotations for each conformer of **4** and **3**

Spectra figure

S1. ¹H NMR spectrum (600MHz, DMSO-*d6*) of compound 1

S2. ¹³C NMR spectrum (150MHz, DMSO-*d6*) of compound 1

S3. HSQC spectrum (600MHz, DMSO-d6) of compound 1

S4.HMBC spectrum (600MHz, DMSO-*d6*) of compound 1

S5. NOESY spectrum (600MHz, DMSO-d6) of compound 1

Page 1 of 1

1/7/2011 5:17:39 PM

printed:

Bruker Daltonics DataAnalysis 3.4

S7. ¹H NMR spectrum (600MHz, DMSO-*d6*) of compound 2

S8. ¹³C NMR spectrum (150MHz, DMSO-*d6*) of compound 2

S10. HMBC spectrum (600MHz, DMSO-*d6*) of compound 2

S11. NOESY spectrum (600MHz, DMSO-d6) of compound 2

S12. The HREIMS spectrum of compound 2

Page 1 of 1

5/17/2011 11:50:33 AM

printed:

Bruker Daltonics DataAnalysis 3.4

S13. ¹H NMR spectrum (600MHz, DMSO-d6) of compound 3

S14. ¹³C NMR spectrum (150MHz, DMSO-*d6*) of compound 3

S15. HSQC spectrum (600MHz, DMSO-d6) of compound 3

S16. HMBC spectrum (600MHz, DMSO-d6) of compound 3

S18. The HREIMS spectrum of compound 3

S20. ¹³C NMR spectrum (150MHz, DMSO-*d6*) of compound 4

S21. HSQC spectrum (600MHz, DMSO-d6) of compound 4

S22. H-H COSY spectrum (600MHz, DMSO-d6) of compound 4

S23.The HREIMS spectrum of compound 4

S24. Rh₂(OCOCF₃)₄₋induced CD spectrum of 1a

Bio-Kine Software V4.74 Date : 2016-6-23 Time : 20:18:08

COMMENTS: File name: dt\高品—\ye5yuan5.bka MOS-450 Spectrometer Spectrum measurement Acq duration = .5 s Blokine V4.74