Electronic Supplementary Information

Redox-active Ionic Liquid Electrolyte with Multi Energy Storage Mechanism for High Energy Density Supercapacitor

Duck-Jea You^a, Zhenxing Yin^a, Yong-keon Ahn^b, Seong-Hun Lee^a, Jeeyoung Yoo^{*a} and Youn Sang Kim^{*a,c}

Fig.S1. Reaction mechanism of (a) EMI-Br, (b) EMI-I and (c) EMITFSI

Fig. S2. (a) Cation structure, ¹H NMR of (b) EMI-Br, (c) EMI-I and (d) EMITFSI (abbreviated as follows: s=singlet, d = doublet, t = triplet and q = quartet)

	Proton	Shift (δ) [ppm]	Multiplicity	Integration
$H_{2}C_{b}$	а	1.5987	Triplet	3.293
	b	4.2723	Quartet	2.210
	С	8.7539	Singlet	1.975
	d	4.0462	Singlet	3.306
H ₃ C	e, f	7.4597	doublet	1.975
EMI-Br				
H ₂ C	а	1.5328	Triplet	3.587
	b	4.2558	Quartet	2.378
	С	8.7497	Singlet	1.000
	d	3.9238	Singlet	3.556
M G C C H	e, f	7.4530	doublet	2.125
EMI-I				
	а	1.5328	Triplet	3.125
	b	4.2150	Quartet	2.093
	С	ND	ND	ND
	d	4.0045	Singlet	1.000
H ₃ C	e, f	7.5402	doublet	1.000
EMI-TFSI				

Table S1. ¹H NMR Data of EMI cation

*ND : Not Detected for weak intensity

Table S2. ATR FTIR bands location of EMITFSI

Functional groups						
N=C-N stretching vibration	1493-1437 cm ⁻¹					
ring C=C vibration	1595-1546 cm ⁻¹					
asymmetric vibration of CF ₃	674-581 cm ⁻¹ , 540-478 cm ⁻¹					
symmetric vibration of CF ₃	579-551 cm ⁻¹					

	1 st degradation temperature (°C)	2 nd degradation temperature (°C)			
EMITFSI	445.91	-			
EMI-Br	265.75	-			
EMI-I	251.04	-			
EMIT-Br0.04	277.79	450.8606			
EMIT-Br0.08	283.7	447.8096			
EMIT-Br0.12	285.01	447.384			
EMIT-10.04	267.45	442.1724			
EMIT-10.08	268.25	443.7011			
EMIT-10.12	268.56	442.0142			

Table S3. Thermal degradation temperature of prepared electrolytes, and ionic liquids.

Fig. S4. Nyquist plot of EMITFSI and EMI-X added electrolyte

Fig. S5. (a) Linear sweep volttamograms for EMITFSI/EM-X and EMITFSI, Cyclo-voltammograms of (b) EMITFSI, (c) EMIT-Br0.12 and (d) EMIT-I0.12

Fig. S6. The Glavanostatic charge-discharge profile of SCs adopting EMITFS, EMIT-X with various current density (a) 0.3 A g⁻¹, (b) 0.5 A g⁻¹, (c) 0.8 A g⁻¹, (d) 1.0 A g⁻¹, (e) 1.5 A g⁻¹, (f) 2.0 A g⁻¹, (g) Capacitance fading of SCs adopting EMITFS, EMIT-X with various current density, (h) EMIT-Br0.12 electrolyte after 300 cycle with 1A g⁻¹ (inset : EMIT-I0.12 after 5000 cycle)

Fig. S7. N2 (77k) adsorption-Desorption isotherm on Porous carbon

Туре	Material	Ionic liquid	Specific capacitance / F g ⁻¹	Rate / A g ⁻¹	Win dow / V	Specific energy / Wh kg ⁻¹	Specific power / kW kg ⁻¹	Cyclability / retention (Number of cycles)	Ref.
Bimodal Redox- active	Porous carbon	EMIT-I0.12 (Proposed electrolyte)	200.6	1	3.5	175.6	5	95% (15000)@1A g ⁻¹ (25C-rate)	in this study
Redox- active electrol yte	Activated carbon	EMIFcNTf/C H₃CN			2.5	23.7			2
Redox- active electrol yte	Activated carbon fiber cloths	EMIBr/EMIB F ₄	59	0.1	1.5				3
Redox- active electrol yte	microporou s- mesoporous carbon	EMIBF ₄ +EMI	245		2.4	36.7			4
EDL	Porous carbon	EMIBF ₄	147	1	3	11.4	98	90% (10,000) @ 100 A g ⁻¹	5
EDL	Activated carbon fiber cloths	EMIBF ₄	32.6	0.1	1.5				3
EDL	Porous carbon	EMIBF ₄	147	2 mA cm ⁻²	4.0	20	3.1	97% (1,000)	6
EDL	SiC-derived carbon	EMIBF ₄	170	0.1	3.6				7
EDL	Carbon nanofibers	EMITFSI	161	1	3.5	246	30		8
EDL	ТіЗС2Тх	EMITFSI	70	1 mV s ⁻¹	3.0				9
Double EDL	Carbon	EMITFSI	160	1	3.0	20	42		10
EDL	Porous carbon nanofiber	EMITFSI	180	0.5	3.5	80	0.4		11
EDL	Graphene- based carbon	EMITFSI/AN	174	2	3.5	74	338	94% (1,000)	12
EDL	Si nanowires	BMITFSI	0.7		1.6	0.23	0.65		13
EDL	Carbonized cellulose/Ac tivated carbon	BMPYTFSI	84	0.1	3.0	21	41.6	92% (10,000)	14

EDL	N-doped reduced graphene oxide aerogel	BMPDCA	765	1	4	245	6.53	86% (3,000)	15
EDL	Graphene nanosheets	BMPDCA	330		3.3	140 at 60 °C	52.5 at 60 °C		16
Pseudo	C/RuO ₂	EMIBF ₄	52	3	3.8	108		98.5% (100,000)	17
Pseudo	K10 clay	Et ₄ NBF ₄ /AN	36	2	2.7	171	1.98	90% (5,000)	18
Pseudo	ZnFe ₂ O ₄	BMISCN (aqueous)	781		1.2	156	7.11	95% (3,000)	19

EMIFcNTf: 1-ethyl-3-methylimidazolium ferrocenylsulfonyl-(trifluoromethylsulfonyl)-imide,

EMIBF₄: 1-Ethyl-3-methylimidazolium tetrafluoroborate

- EMITFSI: 1-ethyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide
- BMPYTFSI: 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide
- BMPDCA: 1-butyl-1-methylpyrrolidinium dicyanamide

AN: acetonitrile

K10: acid-leached montmorillonite

Et₄NBF₄: tetraethylammonium tetrafluroborate

MB: 1-methyl-3-butylimidazolium bromide

BMISCN: 1-butyl-3-methylimidazolium thiocyanate

BMIBF₄: 1-butyl-3-methylimidazolium tetrafluoroborate

- 1. A. Eftekhari, *Energy Storage Materials*, 2017, **9**, 47-69.
- 2. H. J. Xie, B. Gélinas and D. Rochefort, *Electrochem. Commun.*, 2016, 66, 42-45.
- 3. S. Yamazaki, T. Ito, M. Yamagata and M. Ishikawa, *Electrochim. Acta*, 2012, **86**, 294-297.
- 4. T. Tooming, T. Thomberg, L. Siinor, K. Tonurist, A. Janes and E. Lust, *J. Electrochem. Soc.*, 2014, **161**, A222-A227.
- 5. D. Zhou, H. Wang, N. Mao, Y. Chen, Y. Zhou, T. Yin, H. Xie, W. Liu, S. Chen and X. Wang, *Microporous Mesoporous Mater.*, 2017, **241**, 202-209.
- 6. G. Sun, K. Li, L. Xie, J. Wang and Y. Li, *Microporous Mesoporous Mater.*, 2012, **151**, 282-286.
- 7. E. Tee, I. Tallo, T. Thomberg, A. Jänes and E. Lust, *J. Electrochem. Soc.*, 2016, **163**, A1317-A1325.
- 8. C. H. Kim, J.-H. Wee, Y. A. Kim, K. S. Yang and C.-M. Yang, *Journal of Materials Chemistry A*, 2016, **4**, 4763-4770.
- 9. Z. Lin, D. Barbara, P.-L. Taberna, K. L. Van Aken, B. Anasori, Y. Gogotsi and P. Simon, *J. Power Sources*, 2016, **326**, 575-579.
- 10. A. B. Fuertes and M. Sevilla, *Carbon*, 2015, **94**, 41-52.
- 11. C. Tran, D. Lawrence, F. W. Richey, C. Dillard, Y. A. Elabd and V. Kalra, *Chem. Commun.*, 2015, **51**, 13760-13763.
- 12. T. Kim, G. Jung, S. Yoo, K. S. Suh and R. S. Ruoff, *ACS Nano*, 2013, **7**, 6899-6905.
- 13. L. Qiao, A. Shougee, T. Albrecht and K. Fobelets, *Electrochim. Acta*, 2016, **210**, 32-37.
- 14. Z. Li, J. Liu, K. Jiang and T. Thundat, *Nano Energy*, 2016, **25**, 161-169.
- 15. P. Iamprasertkun, A. Krittayavathananon and M. Sawangphruk, *Carbon*, 2016, **102**, 455-461.
- 16. C.-H. Yang, P.-L. Huang, X.-F. Luo, C.-H. Wang, C. Li, Y.-H. Wu and J.-K. Chang, *ChemSusChem*, 2015, **8**, 1779-1786.
- 17. B. Shen, X. Zhang, R. Guo, J. Lang, J. Chen and X. Yan, *Journal of Materials Chemistry A*, 2016, **4**, 8180-8189.
- 18. S. Maiti, A. Pramanik, S. Chattopadhyay, G. De and S. Mahanty, *J. Colloid Interface Sci.*, 2016, **464**, 73-82.
- 19. M. M. Vadiyar, S. K. Patil, S. C. Bhise, A. V. Ghule, S.-H. Han and S. S. Kolekar, *Eur. J. Inorg. Chem.*, 2015, **2015**, 5832-5838.