Supporting Information

Mechanoresponsive luminescence and liquid-crystalline behaviour of a cyclophane featuring two 1,6 -bis(phenylethynyl)pyrene groups

Yoshimitsu Sagara* and Nobuyuki Tamaoki*
E-mail: sagara@es.hokudai.ac.jp; tamaoki@es.hokudai.ac.jp

Synthesis of compound 1

The synthetic route used to prepare compound $\mathbf{1}$ is shown in Schemes S 1 . 1,6-Bis(4-hydroxyphenylethynyl)pyrene and hexaethyleneglycol mono-tosylate were synthesized according to reported procedures. ${ }^{51, S 2}$

Scheme S1

Conditions: (a) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 70{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (b) $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C} \rightarrow$ r.t., 3 h ; (c) 1,6-bis(4-hydroxyphenylethynyl)pyrene, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $70^{\circ} \mathrm{C}, 28 \mathrm{~h}$.

Compound 3. A suspension of 1,6-bis(4-hydroxyphenylethynyl)pyrene ($860 \mathrm{mg}, 1.98 \mathrm{mmol}$), hexaethyleneglycol mono-tosylate $(1.90 \mathrm{~g}, 4.35 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.37 \mathrm{~g}, 9.90 \mathrm{mmol})$ in DMF $(200 \mathrm{~mL})$ was stirred for 12 h at $70{ }^{\circ} \mathrm{C}$. After cooling to room temperature, most of the DMF was evaporated and chloroform (300 mL) was added to the mixtue. The organic layer was washed with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(3 \times 100 \mathrm{~mL})$, then washed with saturated aq. $\mathrm{NaCl}(1 \times 100 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and the solvent was evaporated. The crude product was purified by flash column chromatography on silica gel (eluent: stepwise gradient from chloroform to chloroform/methanol = $5: 1$) and subsequent re-precipitation from a mixture of chloroform and ethyl acetate to afford compound 3 (1.63 g , 1.69 mmol) as a yellow solid in 85% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.46(\mathrm{br}, 2 \mathrm{H}), 3.61-3.79(\mathrm{~m}, 40 \mathrm{H}), 3.91-3.93(\mathrm{~m}, 4 \mathrm{H}), 4.20-4.23(\mathrm{~m}, 4 \mathrm{H}), 7.00(\mathrm{~d}$, $J=9.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.67(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 8.14-8.22(\mathrm{~m}, 6 \mathrm{H}), 8.68(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=61.81,67.65,69.79,70.33,70.61,70.63,70.65,70.72,70.74,70.74,70.93,72.82,87.45,95.71,114.96$, $115.80,118.89,124.41,125.19,126.32,128.15,129.88,131.07,131.99,133.28,159.20$. MS (MALDI-TOF): m/z: 962.65 (calcd. $[\mathrm{M}]^{+}=962.45$).

Compound 4. To a solution of $3(1.30 \mathrm{~g}, 1.35 \mathrm{mmol})$ and triphenylphosphine $(0.85 \mathrm{~g}, 3.24 \mathrm{mmol})$ in dichloromethane (100 mL) was added dropwise a solution of tetrabromomethane ($1.12 \mathrm{~g}, 3.37 \mathrm{mmol}$) in dichloromethane $(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was subsequently stirred for 3 h at room temperature before most of the dichloromethane was evaporated. The crude product was purified by flash column chromatography on silica gel (eluent: dichloromethane/acetone $=3: 1$), then purified by another flash column chromatography (dichloromethane/acetone $=1: 1$) and subsequent re-precipitation from a mixture of dichloromethane and hexane to afford compound $4(1.13 \mathrm{~g}, 1.04 \mathrm{mmol})$ as a yellow solid in 77% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.47(\mathrm{t}, J=12.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.66-3.77(\mathrm{~m}, 32 \mathrm{H}), 3.80(\mathrm{t}, J=12.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.89-$ $3.91(\mathrm{~m}, 4 \mathrm{H}), 4.19-4.21(\mathrm{~m}, 4 \mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.65(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 8.13-8.21(\mathrm{~m}, 6 \mathrm{H}), 8.67(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=30.45,67.60,69.74,70.60,70.66,70.67,70.72,70.74,70.96,71.27$, $87.45,95.66,114.89,115.78,118.82,124.32,125.14,126.24,128.08,129.82,131.00,131.91,133.24,159.13 . \mathrm{MS}$ (MALDI-TOF): m/z: 1086.64 (calcd. $[\mathrm{M}]^{+}=1086.28$).

Compound 1. A solution of compound $4(500 \mathrm{mg}, 0.459 \mathrm{mmol})$ and 1,6-bis(4-hydroxyphenylethynyl)pyrene (200 $\mathrm{mg}, 0.459 \mathrm{mmol})$ in DMF (25 mL) was added to a suspension of $\mathrm{K}_{2} \mathrm{CO}_{3}(1.27 \mathrm{~g}, 9.18 \mathrm{mmol})$ in DMF (200 mL) dropwise at $70^{\circ} \mathrm{C}$ over 4 h under vigorous stirring. After further stirring for 24 h at $70^{\circ} \mathrm{C}$, the reaction suspension was cooled and poured into the mixture of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(300 \mathrm{~mL})$ and ethyl acetate (200 mL). The organic phase was washed with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(4 \times 100 \mathrm{~mL})$, followed by saturated aq. $\mathrm{NaCl}(100 \mathrm{~mL})$, the organic layer was dried over MgSO_{4}, filtered, and the solvent was evaporated. The crude product was purified by flash column chromatography on silica gel (eluent: dichloromethane/acetone $=3: 1$) and recycling GPC (eluent: chloroform) to afford compound $\mathbf{1}(181 \mathrm{mg}, 0.133 \mathrm{mmol})$ as a yellow solid in 29% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.71-3.78(\mathrm{~m}, 32 \mathrm{H}), 3.88-3.91(\mathrm{~m}, 8 \mathrm{H}), 4.10-4.12(\mathrm{~m}, 8 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}$, $8 \mathrm{H}), 7.49(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 8 \mathrm{H}), 7.67(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.75(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 8.23(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=67.65,69.85,70.90,71.08,87.64,95.39,114.75,115.97,118.44$,
$123.83,124.76,125.78,127.63,129.42,130.63,131.57,133.25,158.98$. HRMS (ESI): m/z: 703.2680 (calcd. $\left.\left[\mathrm{M}+\mathrm{Na}_{2}\right]^{2+}=703.2672\right)$.

Concentration dependency of the photoluminescence spectra

Fig. S1. Photoluminescence spectra of pyrenophane 1 in chloroform solution varying the concentration from $1.0 \times$ $10^{-5} \mathrm{M}$ to $1.0 \times 10^{-7} \mathrm{M}$. All spectra were recorded at room temperature with excitation light of 400 nm .

References

S1. Y. Sagara, C. Weder and N. Tamaoki, Chem. Mater., 2017, 29, 6145-6152.
S2. A. Dif, F. Boulmedais, M. Pinot, V. Roullier, M. Baudy-Floc'h, F. M. Coquelle, S. Clarke, P. Neveu, F. Vignaux, R. Le Borgne, M. Dahan, Z. Gueroui and V. Marchi-Artzner, J. Am. Chem. Soc., 2009, 131, 14738-14746.

${ }^{1} H$ NMR of Compound 1

${ }^{13} \mathrm{C}$ NMR of Compound 1

