2-Nitrophenol sensor based wet-chemically prepared binary doped Co₃O₄/Al₂O₃ nanosheets by electrochemical approach

Mohammed M. Rahman^{a,b,*}, M.M. Alam^c, Abdullah M. Asiri^{a,b}

^aChemistry Department, King Abdulaziz University, Faculty of Science, Jeddah 21589, P.O. Box 80203, Saudi Arabia; ^bCenter of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah 21589, P.O. Box 80203, Saudi Arabia; ^cDepartment of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet 3100, Bangladesh

Supporting information

Optimization of 2-Nitrophenol chemical sensor (Intra-day):

Fig. S1 Optimization of 2-Nitrophenol chemical sensor based on Co_3O_4/Al_2O_3 NSs, (a) repeatability at o hour, (b) repeatability after 2 hour, and (c) repeatability after 4 hours,

Fig. S2 Optimization of 2-Nitrophenol chemical sensor based on Co_3O_4/Al_2O_3 NSs , (a) repeatability at beginning day, (b) repeatability at 2^{nd} day, and (c) repeatability after 3^{rd} day,

Fig. S3 The reliable control measurements of 2-NP based on Co₃O₄/Al₂O₃ NSs/GCE, (a) I-V responses in mixed or single target chemicals such as 2-NP, 2-NP+3-CP and 3-CP, (b) I-V responses in mixed or single target chemicals such as 2-NP, 2-NP+4-NP and 4-NP.

Optical evaluations:

The photosensitivity of prepared NSs of Co_3O_4/Al_2O_3 were investigated by UV-vis analysis, which is illustrated in **Fig. S4**a. The UV-vis spectrum is a characteristic of the absorption of radiant energy of visible light and the transition of the outer electrons of the atoms from lower to higher energy level.¹ In this work, the UV absorption study is performed in the range of 290 to 800 nm at room temperature. The resulted spectrum contains a wider and intense peak at 307 nm (an enlarged view is shown in the inset of **Fig. S4a** and this is the characteristic band of synthesized Co_3O_4/Al_2O_3 NSs. The obtained UV absorption band is authenticated for the transition of valance electron of prepared NSs from lower to higher energy level.²⁻⁴ According to the equation (6); the calculated band gape energy is 4.04 eV.

$$E_{bg} = 1240 / \lambda_{max} \tag{6}$$

Here, E_{bg} = band-gap energy, λ_{max} = maximum absorbed wave length.^{5,6}

To identify the functional groups existing in the prepared NSs, the Co_3O_4/Al_2O_3 NSs were investigated by Fourier-transform infrared (FTIR) spectroscopy, which is presented in **Fig. S4**b. The FTIR is performed at range of 450–4000 cm⁻¹ and resultant peaks are obtained from the corresponding atomic or molecular vibration. As it is seen in FTIR spectrum, the several major peaks at 536, 658, 1634 and 3414 cm⁻¹ are observed. The two major peaks at 536 and 658 cm⁻¹ are associated to the stretching vibrations of Co–O. This observation is consistent with those reported by previous authors.⁷⁻⁹ The peaks at 1634 and 3400 cm⁻¹ are assigned to O-H stretching vibration mode¹⁰⁻¹³ due to the adsorption of water from environment.

Fig. S4. Optical characterization of doped Co₃O₄/Al₂O₃ nanomaterials. (a) UV/vis. Spectroscopy and (b) FTIR spectroscopy

XPS analysis of doped Co₃O₄/Al₂O₃ nanomaterials:

Fig. S5. XPS analysis of doped Co₃O₄/Al₂O₃ nanomaterials

References:

- 1. M. M. Rahman, A. Jamal, S. B. Khan and M. Faisal, J. Phys. Chem. C, 2011, 115, 9503–9510.
- 2. M. M. Rahman, G. Gruner, M. S. Al-Ghamdi, M. A. Daous, S. B. Khan and A. M. Asiri, Chemistry Central Journal, 2013, 7, 60.
- 3. R. Ramasamy, K. Ramachandran, G. G. Philip, R. Ramachandran, H. A. Therese and G. G. kumar, RSC Adv., 2015, 5, 76538-76547.
- 4. S. Kumar and A.K. Ojha, RSC Adv., 2016, 6, 8651-8660.
- 5. M. M. Rahman, M. M. Alam, A. M. Asiri and M. A. Islam, Talanta, 2017, 170, 215–223.
- 6. M. M. Rahman, M. M. Alam, A. M. Asiri and M. A. Islam, RSC Adv., 2017, 7, 22627–22639.
- 7. S. Shahabuddin, N. M. Sarih, F. H. Ismail, M. M. Shahid and N. M. Huang, RSC Adv., 2015, 5, 83857-83867.
- 8. X. Xia, J. Tu, Y. Zhang, Y. Mai, X. Wang, C. Gu and X. Zhao, RSC Advances, 2012, 2, 1835–1841.

- 9. G. A. M. Ali, O. A. Fouad, S. A. Makhlouf, M. M. Yusoff and K. F. Chong, J. Solid State Electrochem, 2014, 18, 2505–2512.
- H. Xu, Z. Hai, J. Diwu, Q. Zhang, L. Gao, D. Cui, J. Zang, J. Liu and C. Xue, Journal of Nanomaterials, 2015, 8.
- 11. X. Huang, Z. Chen, T. Gao, Q. Huang, F. Niu, L. Qin and Y. Huang, Energy Technol., 2013, 1, 751 756.
- 12. M. Nidhin, K. J. Sreeram and B. U. Nair, Chemical Engineering Journal, 2012, 185, 352-357.
- 13. V. K. Patel, J. R. Saurav, K. Gangopadhyay, S. Gangopadhyay and S. Bhattachary, RSC Adv., 2015, 5, 21471–21479.