Supporting Information - A

Synthesis of Tetrazole Fused Azepanes and Quantum Chemical Topology Study on the Mechanism of the Intramolecular Cycloaddition Reaction.

M. S. Pino-Gonzalez,^a* A. Romero-Carrasco,^a S. Calvo-Losada,^b* N. Oña-Bernal,^a J. Quirante^b and F. Sarabia^a

- a. Department of Organic Chemistry. Faculty of Sciences. Campus de Teatinos, s/n. University of Málaga. 29071 Málaga (Spain). E-mail: pino@uma.es
- b. Department of Physical Chemistry. Faculty of Sciences. Campus de Teatinos, s/n. University of Málaga. 29071 Málaga (Spain). E-mail: asenruhup@hotmail.com

Contents:

1. Experimental Procedures	2
2. Computational data	10
2.1. Transition State in the cyclization process to form tetrazole 22 from azido nitrile 21	
Coordinates and energies	10
2.2. Cyclization processes to form tetrazoles 34 and 36 from azido nitriles 33 and 35	. 13
Table S2: Molecular graphs for selected points on the IRC	. 13
Intrinsic reaction coordinates (IRCs)	15
Coordinate lists	16
Energy lists	21
3. Inhibitory activity against glycosidases	. 24

1. Experimental Procedures.

General.

Reactions were monitored by thin layer chromatography (TLC) on E. Merck silica gel plates (0.25 mm) and visualized using UV light (254 nm) and/or heating with phosphomolybdic acid/cerium sulfate(IV)/H2SO4 aq solution. Flash chromatography was performed on E. Merck silica gel (60, particle size 0.040–0.063 mm). NMR spectra were recorded on a Bruker Avance-400 or WP200SY spectrometers at room temperature. Chemical shifts (ppm) are reported relative to the residual solvent peak. Multiplicities are designated as: singlet (s), bs (broad single), doublet (d), triplet (t), multiplet (m), at (apparent triplet) and dt (double triplet) and Coupling constants *J* are expressed in Hertz units. NMR assignments were made using two-dimensional COSY and gHMQC experiments. NMR numbering for bicycled products followed that of the previous compounds. IR spectra of the azido compounds were recorded on a SHIMADZU FTIR-8300 and showed the N₃ typical band at 2324–2352 cm⁻¹. High resolution mass spectra (HRMS, FAB) were recorded in the Mass Spectrometery Service of the University of Seville. Optical rotations were measured on a Perkin–Elmer 241 polarimeter.

1.1 Synthesis of 6-azido-3,5,7-*O*-benzyl-6-deoxy-1,2-*O*-isopropylidene-D-glycero-α-D-glucoheptofuranose (16).

To a stirred solution of azide **15** (750 mg, 2.05 mmol) in dried THF (10 mL) at 0°C, were added NaH 60% mineral oil (0.84 g), TBAI (3 mg) and BnBr (0.52 ml, 4.37 mmol) dropwise. After 3 h, solvent was evaporated and the residue dissolved in CHCl₃. The solution was washed with 5% aq. NaOH, dried (anh. MgSO₄) and concentrated under vacuum to give the tribenzylated **16** (1.02 g, 92%) as a colourless syrup. **Rf:** 0.3 (4:1 Hex/AcOEt). ¹**H-RMN (CDCl₃, 400 MHz, δ ppm):** 7.37-7.16 (m, 15H, *Ph*), 5.89 (d, 1H, J = 3.7 Hz, H-1), 4.77-4.47 (m, 6H, CH₂Ph), 4.43 (d, 1H, J = 4.3 Hz, H-2), 4.37 (d, 1H, J = 4.3 Hz, H-3), 4.23 (dd, 1H, J = 3.0 Hz, 9.3 Hz, H-6), 4.15-3.99 (m, 2H, H-4 and H-5), 3.80-3.74 (m, 2H, H-7a and H-7b), 1.44 and 1.30 (2s, 2x3H, 2CH₃). ¹³**C-RMN (CDCl₃, 100 MHz, δ ppm):** 137.3-127.2 (3 *Ph*), 111.9 [*C*(CH₃)₂], 105.19 (C-1), 82.00, 81.33 and 78.75 (C-2, C-3 and C-4), 76.64 (C-5), 73.50, 73.30 and 71.90 (CH₂Ph), 63.10 (C-6), 26.90 and 26.40 (2CH₃).

ref. 15: N. Oña, A. Romero-Carrasco and M. S. Pino-González, Tetrahedron: Asymmetry 2013, 24, 156.

1.2 Synthesis of 6-azido-3,5,7-O-benzyl-6-deoxy-D-glycero-α-D-gluco-heptofuranose (17).

The protected azide **16** (840 mg, 1.53 mmol) was dissolved in 5 mL of TFA/H₂O (3:2) and stirred for 3h at r.t. Then, the mixture was concentrated and the residue purified by column chromatography to give pure **17** (710 mg, 92%) as a colourless syrup. **Rf:** 0.45 (1:1 Hex/AcOEt). ¹**H-RMN (CDCI₃, 400 MHz, \delta ppm):** 7.61-7.16 (m, 15H, *Ph*), 5.47 (dd, 1H, *J* = 6.5 Hz, *J* = 4.1 Hz H-1), 4.82-4.33 (m, 8H, 3CH₂Ph, H-2, H-3), 4.32-3.60 (m, 3H, H-4, H-5, H6), 2.95-2.85 (m, 2H, H-7a and H-7b). ¹³**C-RMN (CDCI₃, 100 MHz, \delta ppm):** 137.3-127.2 (3*Ph*), 79.2, 77.8, 74.1, 73.7 72.2 (C-1, C-2, C-3, C-4, C-5), 72.68, 69.35 and 69.02 (*C*H₂Ph), 63.24 (C-6).

1.3 Synthesis of (2R,3S,4R,5R,6R)-6-azido-3,5,7-tribenzyloxy-2,4-dihydroxyheptanamide (18).

To a solution of lactol **17** (515 mg, 1.01 mmol) in 28% aq NH₃ (10 mL) and THF (1 mL), was added I₂ (281 mg, 1.11 mmol). After stirring for 1h, a saturated solution of Na₂S₂O₃ was added and the mixture extracted with CH₂Cl₂ (2 x 25 mL). The combined organic solvents were dried (MgSO₄) and concentrated to give amide **18** (425 mg, 81%) as a colourless syrup. A minor product (19 mg, 4%) was isolated and identified as azido nitrile with a carbon less. **Rf:** 0.25 (1:1 Hex/AcOEt). [α]₀²⁶ -30.4 (c 0.8, CH₂Cl₂) ¹**H-RMN (CDCI₃, 400 MHz, \delta ppm):** δ 7.42–7.17 (m, 15H, 3*Ph*), 6.81 (d, 1H, *J* = 3.0 Hz, N*H*₂), 6.27 (d, 1H, *J* = 2.9 Hz, N*H*₂), 4.68 (d, 1H, *J* = 11.2 Hz, *CH*₂Ph), 4.64 (d, 1H, *J* = 11.2 Hz, *CH*₂Ph), 4.56 (s, 2H, *CH*₂Ph), 4.41 (d, 1H, *J* = 11.2 Hz, *CH*₂Ph), 4.38 – 4.33 (m, 2H, *CH*₂Ph and H-2), 4.28–4.21 (m, 2H), 4.20 – 4.15 (m, 1H, H-6), 3.97 (t, 1H, *J* = 6.6 Hz, H-4), 3.83 (dd, 1H, *J* = 10.2, 4.1 Hz, H-7a), 3.77 – 3.71 (m, 2H, H-5 and H-7b), 3.65 (t, *J* = 6.2 Hz, 1H). ¹³C-RMN (CDCI₃, 100 MHz, δ ppm): δ 154.69 (C-1), 136.75–126.12 (*Ph*), 74.51 (C-3), 74.21 (C-4), 73.24 (*C*H₂Ph), 72.81 (C-5), 72.41 (*C*H₂Ph), 65.48 (C-2), 44.37 (C-6).

1.4 Synthesis of (2R,3S,4R,5R,6R)-6-azido-3,5,7-tribenzyloxy-2,4-diacetoxyheptanamide (20).

To a stirred solution of amide **18** (329 mg, 0.63 mmol) in Ac₂O (6.3 mL), at 0°C, was added pyridine (101 μ L, 1.26 mmol) dropwise. The reaction mixture was then allowed to warm to room temperature. After 4 h, DCM (30 mL) and a saturated NH₄Cl solution (20 mL) were added. The phases were then separated, and the aqueous phase was extracted with DCM (20 mL). The combined organic phases were dried (anh. MgSO₄), filtered, and the solvent removed under reduced pressure. The resulting colourless oil was purified by column chromatography to give pure **20** (350 mg, 92%).

Rf: 0.35 (1:1 Hex/AcOEt) $[\alpha]_{D}^{28}$ -18.1 (c 1.5, CH₂Cl₂) ¹H-RMN (CDCl₃, 400 MHz, δ ppm): δ 7.42 – 7.16 (m, 15H, 3*Ph*), 6.35 and 6.21 (2 bs, 1H, N*H*₂), 5.46 (dd, 1H, *J* = 6.6, 3.4 Hz, H-2), 5.36 (d, 1H, *J* = 3.7 Hz, H-4), 4.68 and 4.60 (2d, 2x1H, *J* = 11.3 Hz, C*H*₂Ph), 4.56–4.52 (m, 3H, *CH*₂Ph), 4.44 (d, 1H, *J* = 11.0 Hz, *CH*₂Ph), 4.37 (dd, 1H, *J* = 6.7, 3.7 Hz, H-3), 3.84–3.73 (m, 3H, H-5, H-6 and H-7a), 3.69–3.60 (m, 1H, H-7b), 2.11 and 2.00 (2s, 2x3H, 2C*H*₃CO. ¹³C-RMN (CDCl₃, 100 MHz, δ ppm): 170.19, 169.97 and 169.80 (2*C*OCH₃ and C-1), 138.08–124.60 (3*Ph*), 77.02 (C-4), 76.91 (C-2), 75.01, 73.41 and 73.04 (*C*H₂Ph), 72.09 (C-3), 71.17 (C-5), 69.81 (C-7), 61.35 (C-6), 20.92 and 20.79 (2COCH₃).

1.5 Synthesis of (2S,3R,4R,5R,6R)-6-azido-3,5,7-tribenzyloxy-2,4-diacetoxyheptanonitrile (21).

To a stirred solution of **20** (335 mg, 0.55 mmol) in DCM (5.5 mL) were added TEA anh. (0.15 mL, 1.1 mmol) and TFAA (0.08 mL, 0.6 mmol). After 4h, a saturated NH₄Cl solution (10 mL) was added. The phases were then separated and the aqueous phase extracted with DCM (2x20 mL). The organic phase was washed with water (10 mL). The combined organic phases were dried (anh. MgSO₄), filtered, and the solvent removed under reduced pressure. The resulting colourless syrup was purified by column chromatography to give pure **21** (238 mg, 74%). **Rf:** 0.4 (2:1 Hex/AcOEt). $[\alpha]_{D}^{28}$ +12.5 (c 1.5, CH₂Cl₂) ¹**H-RMN (CDCl₃, 400 MHz, \delta ppm):** 7.43–7.24 (m, 15H, 3Ph), 5.61 (d, 1H, *J* = 6.3 Hz, H-2), 5.48 (dd, 1H, *J* = 5.1, 3.5 Hz, H-4), 4.70 – 4.49 (m, 6H, 3*CH*2Ph), 4.12 (dd, 1H, *J* = 6.4, 3.5 Hz, H-3), 3.95 – 3.86 (m, 2H, H-5 and H-6), 3.83 (dd, 1H, *J* = 10.1, 2.7 Hz, H-7a), 3.70 (dd, 1H, *J* = 10.1, 6.7 Hz, H-7b), 2.15 and 2.06 (2s, 2x3H, 2 *CH*₃CO). ¹³**C-RMN (CDCl₃, 100 MHz, \delta ppm):** 169.91 and 168.68 (2*C*OCH₃), 138.42–126.59 (3*Ph*), 115.25 (C-1), 77.34 (C-5), 75.51 (C-3), 74.29, 74.00 and 73.47 (C*H*₂Ph), 69.98 (C-4), 69.52 (C-7), 61.68 (C-6), 60.23 (C-2), 21.09 and 20.28 (COCH₃).

1.6 Cycloaddition to tetrazole azepane 22 and deacetylation. Synthesis of tetrazole azepane 23

In a sealed tube with Ar atmosphere and stirring was placed **21** (241 mg, 0.41 mmol) in anh. DMSO (8.2 mL). After heating at 140 °C for 24 h, the mixture is allowed to warm to room temperature and CH₂Cl₂ (25 mL) was added. The organic extracts are washed with saturated solution of NH₄Cl, dried (anh. MgSO₄) and concentrated to give **22** (146 mg, 61%) as a colourless syrup that was characterized as the tetrazolo azepane **22**. To a solution of **22** (142 mg, 0.24 mmol) in anh. MeOH (2.4 mL) was added with stirring CH₃ONa (26 mg, 0.48 mmol). After 2h the mixture was concentrated and the residue purified by flash chromatography to give **23** (113 mg, 94%) as a colourless syrup. **Rf**: 0.4 (1:3 Hex/AcOEt). $[\alpha]_{D}^{27}$ +3.2 (c 0.6, CH₂Cl₂). ¹**H-RMN (CDCl₃, 400 MHz, \delta ppm): \delta 7.40–7.10 (m, 15H, 3***Ph***), 5.25 (d, 1H,** *J* **= 8.3 Hz, H-2), 5.10 (dt, 1H,** *J* **= 6.6, 4.0 Hz, H-6), 4.99 (d, 1H,** *J* **= 11.3 Hz,** *CH***₂Ph), 4.68 (d, 1H,** *J* **= 11.4 Hz,** *CH***₂Ph), 4.60 (d, 1H,** *J* **= 11.8 Hz,** *CH***₂Ph), 4.53 (d, 1H,** *J* **= 11.6 Hz,** *CH***₂Ph), 4.20 (dd, 1H,** *J* **= 6.6, 1.6 Hz, H-5), 3.95 (dd, 1H,** *J* **= 8.3, 6.8 Hz, H-3), 3.86 (dd, 1H,** *J* **= 10.4, 4.2 Hz, H-7a), 3.80 (dd, 1H,** *J* **= 10.4, 3.8 Hz, H-7b). ¹³C-RMN (CDCl₃, 100 MHz, \delta ppm): \delta 154.95 (C-1), 138.55 – 123.25 (3***Ph***), 80.03 (C-3), 75.56 (C-5), 74.99, 73.55 and 73.12 (***CH***₂Ph), 72.22 (C-4), 67.70 (C-2), 67.54 (C-7), 59.47 (C-6).**

1.7 Deprotection of benzylated 23 to tetrazolopolyhydroxyazepane 13

The tetrazolo **23** (108 mg, 0.21 mmol) was dissolved in MeOH (10 mL) and Pd(OH)₂ (16 mg, 0.11 mmol) was added. The mixture was hydrogenated under a pressure of 45 psi for 48 h and then filtered throught Celite®. Solvent was evaporated and water was added to the crude product to be purified throught Cartridge, Sep-Pak® C18. Filtrates were concentrated under vacuum giving the tetrazolopolyhydroxyazepane **13** (41 mg, 84%) as a white solid. m.p. = 92-95°C. $[\alpha]_D^{27}$ +4.7(0.8 c, MeOH). **IR (v, cm-1):** 3313, 2464, 2399, 1468, 1433, 1262, 1061. ¹H-RMN (**D**₂**O**, 400 MHz, δ ppm): δ 5.03 (ddd, 1H, *J* = 6.5, 4.8 Hz, H-6), 4.94 (d, 1H, *J* = 9.7 Hz, H-2), 4.33 (dd, 1H, *J* = 5.3, 2.0 Hz, H-5), 3.90 – 3.75 (m, 3H, H-7a, H-7b and H-4), 3.81 (dd, 1H, *J* = 9.7, 8.6 Hz, H-3). ¹³C-RMN (CDCI₃, 100 MHz, δ ppm) and DEPT-135 data: δ 157.69 (C-1), 74.95 (C-4, CH), 73.68 (C-3, CH), 71.93 (C-5, CH),

69.19 (C-2, CH) , 66.93 (C-6, CH), 61.82 (C-7, CH₂). **FAB-HRMS (NBA):** m/z 255.0697, $[M+Na]^+$ calcd. for C₇H₁₂N₄O₅Na 255.0700.

1.8 Synthesis of 6-azido-6-deoxy-3-O-benzyl-1,2-O-isopropyliden-α-D-glucofuranose (25).

To a stirred solution of **24** (6.66 g, 14.33 mmol) in DMF (140 mL) was added NaN₃ (1.024 g, 15.76 mmol) and the mixture refluxed for 2h. The reaction is left to reach r.t. and a saturated NH₄Cl solution (100 mL) was added. The phases were then separated and the aqueous phase extracted with DCM (2x150 mL). The combined organic extracts were washed with water (100 mL), dried (anh. MgSO₄), filtered, and the solvent removed under reduced pressure. The resulting syrup was purified by column chromatography to give pure **25** (3.78 g, 77%) as a colourless syrup. **Rf**: 0.75 (1:1 Hex/AcOEt) ¹**H**-**RMN (CDCI₃, 400 MHz, \delta ppm):** 7.41–7.27 (m, 5H, *Ph*), 5.92 (d, 1H, *J* = 3.8 Hz, H-1), 4.74 (d, 1H, *J* = 11.8 Hz, *CH*₂Ph), 4.63 (d, 1H, *J* = 3.8 Hz, H-1), 4.53 (d, 1H, *J* = 11.8 Hz, CH₂Ph), 4.15 – 4.04 (m, 4H, H-2, H-3, H-4, H-5), 3.57–3.39 (m, 1H, H-6), 2.36 – 2.28 (m, 1H, OH), 1.49 and 1.33 (s, 6H, *CMe*₂). ¹³**C-RMN (CDCI₃, 100 MHz, \delta ppm):** 138.41–122.97 (*Ph*), 112.00 [*C*(CH₃)₂], 105.24 (C-1), 82.11, 81.61 and 79.97 (C-2, C-3 and C-4), 72.11(*C*H₂Ph), 68.47 (C-5), 54.52 (C-6), 26.83 and 26.31 (*CMe*₂).

1.9 Synthesis of 6-azido-6-deoxy-3,5-di-*O*-benzyl-1,2-*O*-isopropylidene-α-D-glucofuranose (26).

To a stirred solution of azide **5** (4,41 g, 13.15 mmol) in THF (120 mL) at 0°C, were added NaH 60% mineral oil, (525 mg), TBAI (100 mg, 0.27 mmol) and BnBr (2,05 ml, 17.23 mmol) dropwise. After 3 h, solvent is evaporated and the residue dissolved in CH₂Cl₂ (100 mL). The mixture is washed with aq. 5% NaOH (2 x 50 mL), dried (MgSO4) and concentrated under vacuum to give the dibenzylated **29** (4.97 g, 89%) as a colourless syrup. ¹H-RMN (CDCl₃, **400 MHz**, **5** ppm): 7.46–7.11 (m, 10H, 2*Ph*), 5.91 (d, 1H, *J* = 3.9 Hz, H-1), 4.74 – 4.49 (m, 2H, 2C*H*₂Ph and H-2), 4.30 (dd, 1H, *J* = 9.0, 3.1 Hz, H-4), 4.13 (d, 1H, *J* = 3.1 Hz, H-3), 4.03 (ddd, 1H, *J* = 9.0, 5.1, 2.6 Hz, H-5), 3.68 (dd, 1H, *J* = 13.2, 2.6 Hz, H-6a), 3.46 (dd, 1H, *J* = 13.2, 5.1 Hz, H-6b), 1.52 and 1.33 (s, 2x3H, 2C*H*₃). ¹³C-RMN (CDCl₃, 100 MHz, **5** ppm): 137.93–127.27 (2*Ph*), 112.10 [*C*(CH₃)₂], 105.11 (C-1), 81.78, 81.70 and 79.33 (C-2, C-3 and C-4), 75.39, 72.76 and 71.96 (2C*H*₂Ph and C-5), 52.19 (C-6), 26.93 and 26.46 (2*C*H₃).

1.10 Synthesis of (2R,3S,4R,5R)-6-azido-3,5-dibenzyloxy-2,4-dihydroxyhexanamide (27).

A solution of azide **26** (510 mg, 1.20 mmol) in TFA/H₂O (18 mL, 3:2) was stirred at room temperature for 3 h. Evaporation of the solvent gave 435 mg of crude product, which is used in the next step without purification. The crude product was dissolved in a mixture of 28% aq. NH₃ (11.2 mL) and THF (1.1 mL), and then I₂ (312 mg, 1.23 mmol) was added. After stirring for 1h the reaction mixture was diluted with aq. saturated Na₂S₂O₃ (15 mL) and extracted with CH₂Cl₂ (2 x 25 mL). The extracts were dried (MgSO₄), concentrated and purified on column chromatography to give **27** (374 mg, 78%, two steps) as a colourless syrup. A minor les polar compound (8%) was isolated and identified as azido nitrile **28** (See NMR assignment in spectra in Supporting-B document). Compound **27** had $[\alpha]_{D}^{28}$: -34.5 (c 1.5, CH₂Cl₂) **Rf**: 0.2 (1:3 Hexanes/AcOEt). ¹**H-RMN (CDCl₃, 400 MHz, 5 ppm)**: 7.39–7.16 (m, 10H, 2*Ph*), 6.82 and 6.21 (2s, 2x1H, CON*H*₂), 4.62 (2d, 2H, 2 H, C*H*₂Ph), 4.38 (d, 1H, *J* = 11.2 Hz, C*H*₂Ph), 4.34 (d, 1H, *J* = 11.3 Hz, C*H*₂Ph), 4.22 (bs, 2H, H-2 and H-3), 3.95 (d, 1H, *J* = 7.9 Hz, H-4), 3.66 (dd, 1H, *J* = 13.0, 2.9 Hz, H-6a), 3.61 (m, 1H, H- 5), 3.44 (dd, 1H, *J* = 13.0, 3.7 Hz, H-6b). ¹³C-**RMN** (**CDCl₃, 100 MHz, 5 ppm)** and **DEPT-135** data: 175.50 (C-1), 137.41, 137.15 and 128.50–128.10 (2*Ph*), 77.91 (C-5, CH), 77.06 (C-3, CH), 74.07 (*C*H₂Ph), 72.54 (C-2, CH), 71.85 (*C*H₂-Ph), 71.76 (C-4, CH), 49.07 (C-6, *C*H₂).

1.11 Synthesis of (2R,3S,4R,5R)-6-azido-3,5-dibenzyloxy-2,4-diacetoxyhexanamide (29).

To a stirred solution of **27** (377 mg, 0.95 mmol) in Ac₂O (9.4 mL), cooled up to 0°C, was added py (159 μ L, 1.97 mmol) dropwise. The reaction mixture was then left to reach room temperature. After 4 h, DCM (40 mL) and saturated aq. NH₄Cl solution (30 mL) were added. The phases were then separated, and the aqueous phase was extracted with DCM (30 mL). The combined organic phases were dried (anh. MgSO₄), filtered, and the solvent removed under reduced pressure. The resulting colourless oil was purified by column chromatography to give pure **29** (416 mg, 91%). **Rf**: 0.25 (1:1 Hexanes/AcOEt). [α]_D²⁷: -11.8 (c 1.6, CH₂Cl₂). ¹H-**RMN (CDCl₃, 400 MHz, 5 ppm)**: 5 7.40–7.20 (m, 10H, 2 Ph), 6.35 and 5.95 (NH₂), 5.40 (t, 1H, *J* = 5.5 Hz, H-4), 5.28 (d, 1H, *J* = 4.2 Hz, H-2), 4.69 (d, 1H, *J* = 11.3 Hz, CH₂Ph), 4.59 – 4.48 (m, 3H, CH₂Ph), 4.13 (dd, 1H, *J* = 5.7, 4.2 Hz, H-3), 3.82 (q, 1H, *J* = 4.9 Hz, H-5), 3.46 – 3.33 (m, 2H, H-6a and H-6b), 2.13 and 2.04 (2s, 2x3H, CH3). ¹³C-**RMN (CDCl₃, 100 MHz, 5 ppm)**: δ 170.27, 169.77 and 169.72 (2 x COCH₃ and C-1), 140.42 – 121.18 (2Ph), 76.87 and 76.81 (C-3 and C-5), 75.04 and 72.20 (CH₂Ph), 71.58 (C-2), 70.73 (C-4), 50.63 (C-6), 20.86 and 20.77 (COCH₃).

1.12 Synthesis of nitrile 30

To a solution of **29** (407 mg, 0.84 moles) in DCM (8.4 mL), anh. TEA (0.23 mL, 1.68 mmol) and TFAA (0.13 mL, 0.92 mmol) were added with stirring. After 4h, a saturated NH₄Cl solution (15 mL) was added. The phases were then separated and the aqueous phase extracted with DCM (2x25 mL). The organic phase was washed with water (10 mL). The combined organic phases were dried (anh. MgSO₄), filtered, and the solvent removed under reduced pressure. The resulting colourless syrup was purified by column chromatography to give pure **30** (317 mg, 81%). **Rf:** 0.35 (2:1 Hexanes/AcOEt). $[\alpha]_{p}^{27}$: +29.3 (c 1.3, CH₂Cl₂). ¹**H-RMN (CDCl₃, 400 MHz, 5 ppm)**: δ 7.41 – 7.28 (m, 10H, *Ph*), 5.49 (d, 1H, *J* = 6.3 Hz, H-2), 5.38 (dd, 1H, *J* = 7.5, 2.5 Hz, H-4), 4.69 (d, 1H, *J* = 11.3 Hz, CH₂Ph), 4.62 and 4.57 (2d, 2x1H, *J* = 11.7 Hz, CH₂Ph), 4.42 (d, 1H, *J* = 11.3 Hz, CH₂Ph), 4.07 (dd, 1H, *J* = 6.3, 2.5 Hz, H-3), 3.87 (ddd, 1H, *J* = 7.5, 5.0, 3.5 Hz, H-5), 3.59 (dd, 1H, *J* = 13.4, 3.5 Hz, H-6a), 3.31 (dd, 1H, *J* = 13.4, 5.0 Hz, H-6b), 2.17 and 2.10 (2s, 2x3H, CH₃). ¹³C-RMN (CDCl₃, 100 MHz, **5 ppm**): δ 169.9 and 168.6 (2COCH₃), 137.0, 136.5 and 129-127 (2Ph), 115.08 (C-1), 76.15 (C-5), 74.75 (C-3), 74.27 and 72.56 (CH₂Ph), 69.52 (C-4), 59.47 (C-2), 50.50 (C-6), 21.01 and 20.28 (CH₃).

1.13 Cycloaddition to tetrazole 31.

In a sealed tube with Ar atmosphere and stirring was placed **30** (308 mg, 0.66 mmol) in anh. DMSO (12.8 mL). After heating at 140 °C for 24 h, the mixture was allowed to warm to room temperature and CH₂Cl₂ (30 mL) was added. The organic extracts are washed with saturated solution of NH₄Cl, dried (anh. MgSO4) and concentrated to give **31** (193 mg, 63 %) as a colourless syrup. **Rf:** 0.65 (1:1 Hexanes/AcOEt). $[\alpha]_{D}^{27}$: +10.9 (c 2.8, CH₂Cl₂). ¹H-**RMN (CDCI₃, 400 MHz, 5 ppm):** 7.40 – 7.20 (m, 10H, 2*Ph*), 6.32 (d, 1H, *J* = 6.9 Hz, H-2), 5.47 (dd, 1H, *J* = 6.5, 1.9 Hz, H-4), 4.90 (dd, 1H, *J* = 14.4, 9.1 Hz, H-6), 4.72 (d, 1H, *J* = 11.5 Hz, C*H*₂Ph), 4.62 (dd, 1H, *J* = 14.4, 1.9 Hz, H-6′), 4.61 (d, 1H, *J* = 11.5 Hz, *CH*₂Ph), 4.52 (s, 1H, *CH*₂Ph), 4.25 (at, 1H, *J* = 6.7 Hz, H-3), 3.96 (dt, 1H, H-5), 2.12 and 2.04 (2s, 2x3H, 2C*H*₃). ¹³C-**RMN (CDCI₃, 100 MHz, 5 ppm):** $\overline{0}$ 169.52 and 168.90 (COCH₃), 151.27 (C-1), 136.60, 136.30 and 128.70-127.90 (2*Ph*), 74.63 (*C*H₂Ph), 73.14 (C-3), 72.74 (C-4), 71.94 (*C*H₂Ph), 71.45 (C-5), 65.26 (C-2), 45.96 (C-6), 20.78 and 20.51 (2*C*H₃).

To a stirred solution of tetrazole **31** (180 mg, 0.38 mmol) in anh. MeOH (3.8 mL) was added NaOCH₃ (41 mg, 0.76 mmol). After 2h, the mixture was concentrated and the crude syrup purified by flash chromatography to afford **32** (141 mg, 97%) as a colourless syrup. **Rf**: 0.3 (1:3 Hexanes/AcOEt). $[\alpha]_D^{28}$: +6.4 (c 0.7, CH₂Cl₂). ¹H-**RMN (CDCl₃, 400 MHz, δ ppm)**: 7.42–6.94 (m, 10H, 2*Ph*), 5.44 (d, 1H, J = 5.8 Hz, H-2), 4.72 (m, H-6a, H-6b), 4.65 and 4.44 (2d, 2x1H, J = 11.7 Hz, C*H*₂Ph), 4.58 (2d, 2x1H, J = 12.10 Hz, C*H*₂Ph), 4.34 (dd, 1H, J = 5.8, 1.7 Hz, H-4), 4.17 (t, 1H, J = 5.8 Hz, H-3), 3.89 (ddd, 1H, J = 8.8, 3.8, 1.7 Hz, H-5). ¹³C-**RMN (CDCl₃, 100 MHz, δ ppm)**: δ 154.66 (C-1), 136.59 (2C) and 128.68–127.91 (2*Ph*), 74.46 (C-3), 74.15 (C-4), 73.18 (CH₂Ph), 72.75 (C-5), 72.35 (*C*H₂Ph), 65.42 (C-2), 44.31 (C-6).

1.15 Deprotection of 32 to tetrazolopolyhydroxyazepane 14

The tetrazolo **32** (129 mg, 0.33 mmol) was dissolved in MeOH (10 mL) and Pd(OH)₂ (25 mg, 0.18 mmol) was added. The mixture was hydrogenated under a pressure of 45 psi for 48 h and then filtered through Celite®. Solvent was evaporated and water was added to the crude product which was purified through Cartridge, Sep-Pak® C18. Filtrates were concentrated under vacuum giving the tetrazolopolyhydroxyazepane **14** (55 mg, 83%) as a white solid. $[\alpha]p^{28}$ +1.4 (c 0.5, MeOH). **p.f.** = 83-86 °C. **IR** (**v**, **cm**⁻¹): 3342, 2477, 2327, 1651, 1431, 1257, 1068. ¹H-**RMN** (**D**₂**O**, **400 MHz**, **5 ppm**): 4.71 (d, 1H, *J* = 9.1 Hz, H-2), 4.67 (d, 1H, *J* = 15.0, 6.0 Hz, H-6a), 4.17 (d, 1H, *J* = 15.0 Hz, *J*_{5,6} = 0, H-6b), 4.12 (dd, 1H, *J* = 6.0, 2.2 Hz, H-5), 3.63 (dd, 1H, *J* = 9.1, 2.2 Hz, H-4), 3.42 (t, 1H, *J* = 9.1 Hz, H-3). ¹³**C-RMN** (**CDCI**₃, **100 MHz**, **5 ppm**) and **DEPT-135** data: 157.84 (C-1), 77.65 (C-4, CH), 72.63 (C-5, CH), 70.29 (C-3, CH), 68.74 (C-2, CH), 51.46 (C-6, CH₂). **FAB-HRMS** (**NBA**): m/e 225.0606, [M+Na]⁺ calcd. for C₆H₁₀N₄O₄Na 225.0600.

2. Computational data.

2.1. Transition State (TS) in the cyclization process to form tetrazole 22 from azido nirile 21

Table S1.- Values for the charge density, $\rho(\mathbf{r})$, and the Laplacian of charge density, $L = -\nabla^2 \rho(\mathbf{r})$, computed at the outlined BCP's of **figure 5** (also enclosed in manuscript). A combination of low charge density with a negative and also low value of *L* confirms the closed-shell interaction between the atoms connected by each Bond Critical Point (BCP).

BCP	α	β	γ	δ	3	ζ
$\rho(\mathbf{r})$	0,00470	0,00750	0,00340	0,01035	0,01064	0,01410
$L = -\nabla^2 \rho(\mathbf{r})$	-0,00380	-0,00613	-0,00253	-0,00908	-0,01037	-0,01353

Figure 5. The computed LC-wPBE(DMSO)/6-311++G(d,p)//LC-wPBE(DMSO)/6-31G(d) molecular graph. The closed-shell relevant interactions have been indicated with blue arrows.

Coordinates	(TS)			
6		-0.86883	1.91843	-0.41989
б		-0.43586	0.75002	0.47463
б		2.3551	1.89559	1.00566
б		0.84938	0.0615	0.01168
6		2.12892	0.87737	-0.14480
7		0.15348	2.95194	-0.24056
б		1.85902	3.24408	0.62102
7		2.12169	4.39778	0.53740
7		0.51052	5.14649	-0.52473
7		-0.04336	4.13405	-0.60851
8		3.74009	2.061	1.23571
8		3.17101	-0.06297	-0.16515
8		0.59205	-0.51633	-1.26641
8		-1.40454	-0.26762	0.49560
1		-0.88609	1.58383	-1.46241
1		-0.2793	1.1426	1.48860
1		1.84906	1.57843	1.92148
1		1.0529	-0.74358	0.72242
1		2.09385	1.42162	-1.09534

4 42041	1 22627	2 05520
4.43241	1.2203/	2.05529
4.17729	0.17878	-1.13955
0.63768	-1.85717	-1.38384
-2.19814	-0.34503	1.66689
3.67323	0.32	2.97990
5 63362	1 30101	2 01828
2.03302	1.30101	2.01020
3.0778	-0.401	2.41/00
3.01208	0.88863	3.63896
5.15826	-0.96211	-1.12493
4.7279	-2.27021	-0.91686
5.63689	-3.31857	-0.94463
-2.85491	-1.6982	1.74223
-2 166	-2 84747	1 36344
-2 76674	_4 09343	1 47864
0 20297	2.07545	2 77004
0.29287	-2.2/5/9	-2.//900
0.91925	-2.6034/	-0.4/5/2
0.40816	-3.35376	-2.87892
0.93774	-1.76145	-3.49508
-0.73955	-1.99309	-2.99850
-2.24548	2.48181	-0.06755
-2.35663	3,46762	-0.54150
-2 33294	2.62809	1.02024
6 09205	2.02000	1 10727
	-3.07294	-1.10/3/
/.4166/	-1.//081	-1.39625
6.50805	-0.72083	-1.35894
4.68865	1.12516	-0.93309
3.70316	0.2584	-2.12737
3.67695	-2.46377	-0.72387
5.29164	-4.33491	-0.77702
7.6927	-3.89493	-1.20975
8 46785	-1 56823	-1 58017
6 85435	0 29854	_1 51122
4 05949	1 206	1 07010
-4.03848	-4.200	1.9/919
-4.74921	-3.06325	2.35896
-4.1504	-1.81593	2.23539
-2.96266	0.43914	1.66362
-1.56193	-0.19532	2.55052
-1.15879	-2.76157	0.96679
-2.22196	-4.98355	1.17637
-4.52634	-5.1822	2.06902
-5.7616	-3.14004	2.74510
-4 7004	-0 92271	2 52193
1.,001 A 20027	-0 21822	3 58670
	1 60070	J.J0070
	1000/9	-0.35108
-4.53116	∠.104/8	-0.36098
-4.69832	2.32391	0.70493
-4.66195	3.05056	-0.90719
-5.53621	1.08773	-0.83529
-6.85893	1.47316	-1.04059
-5.17477	-0.23754	-1.04817
-7.80788	0.54658	-1.44700
-7 14922	2.50951	-0.88263
_6 10/0Q	-1 16517	-1 45010
	-0 52760	_0 00040
	-U.22/0Z	-U.00747 1 65077
-/.44266		-1.050//
-8.83588	0.86065	-1.60407
-5.83086	-2.19822	-1.62263
-8.18388	-1.50405	-1.98015

Energies rep	ported relative to the	TS energy of	-1983.983652
Summary	of reaction path foll	owing	
	Energy	RxCoord	
1	-0.03249	-8.77246	
2	-0.03212	-8.42189	
3	-0.03171	-8.07640	
4	-0.03124	-7.72724	
5	-0.03071	-7.37647	
б	-0.03011	-7.02468	
7	-0.02944	-6.67524	
8	-0.02870	-6.33175	
9	-0.02785	-5.98047	
10	-0.02692	-5.63467	
11	-0.02587	-5.28335	
12	-0.02469	-4.93090	
13	-0.02339	-4.57954	
14	-0.02196	-4.22726	

-0.02039	-3.87706
-0.01867	-3.52515
-0.01679	-3.17297
-0.01476	-2.82064
-0.01259	-2.46820
-0.01032	-2.11570
-0.00800	-1.76313
-0.00571	-1.41050
-0.00358	-1.05782
-0.00176	-0.70510
-0.00049	-0.35234
0.0000	0.0000

-0.00800	-1.76313
-0.00571	-1.41050
-0.00358	-1.05782
-0.00176	-0.70510
-0.00049	-0.35234
0.00000	0.00000
-0.00058	0.35216
-0.00249	0.70508
-0.00593	1.05797
-0.01100	1.41090
-0.01767	1.76382
-0.02576	2.11674

-0.03500

-0.04501

-0.05537

-0.06562

-0.07520

-0.08342

-0.08948

-0.09290

-0.09533

-0.09750

-0.09939

-0.10103

-0.10245

-0.10367

-0.10471

-0.10557

-0.10626

-0.10682

-0.10726

2.46966

2.82256

3.17544

3.52831

3.88117

4.23393

4.58258

4.88474

5.19745

5.53773

5.88367

6.23123

6.58095

6.93137

7.28243

7.63156

7.97934

8.32567

8.66929 _____

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48 49

50

2.2. Cyclization processes to form tetrazoles 34 and 36 from azido nitriles 33 and 35.

Table S2 Molecular graphs for selected points on the **IRC** for the azido nitriles **33** and **35** (Reactant, p1, p30, and p46) computed at LCwPBE(DMSO)/6-311++G(d,p)//LCwPBE(DMSO)/6-31G(d) theoretical level. The molecular graphs are constructed from CPs of the electronic charge density, $\rho(r)$, and trajectories of the gradient of $\rho(r)$, $\nabla \rho(r)$, red points stand for bond (3,-1) CPs, yellow for ring (3,+1)CPs and purple (not visible) for nuclear (3,-3)CPs.

It can be observed the formation of the **N-C** bond before the **N-N** one due to the **pseudo concerted mechanism** in the formation of the tetrazole ring.

Figure S1. Some points of calculated Intrinsic Reaction Coordinate (IRC) for the cyclization reaction of **33** to **34.** Energies are relative to the preferred conformer obtained after full optimization of the starting compound. Interatomic distances: C-N (black) and N-N (violet).

Figure S2. Some points of calculated Intrinsic Reaction Coordinate (IRC) for the cyclization reaction of **35** to **36.** Energies are relative to the preferred conformer obtained after full optimization of the starting compound. Interatomic distances: C-N (black) and N-N (violet).

Coordinates of the compounds 33 and 35 and Transition States (TS) in the cyclization processes to form tetrazoles 34 and 36 respectively.

Ciano nitrile 33

С	2.21373600	-0.04688200	-0.65949500
С	1.32592300	-0.19359700	0.59004200
С	-1.62119000	-1.39883800	0.06980700
С	-0.00817500	0.55615700	0.54107700
С	-1.17201900	0.03136800	-0.30318300
Ν	1.43683300	0.03453100	-1.90498100
С	-0.71585000	-2.43438900	-0.45421200
Ν	-0.01438800	-3.24836800	-0.87122000
Ν	1.34006400	2.10233000	-3.02275400
Ν	1.42090000	1.13658600	-2.44522500
0	-2.87479100	-1.65000400	-0.53462600
0	-2.26457700	0.87395100	-0.03733200
0	0.26397600	1.87309600	0.06160500
0	2.07877300	0.36212500	1.64630900
С	-4.04605600	-1.44141800	0.13163100
С	-2.81755900	1.49573000	-1.18581000
С	0.09736000	2.90857900	0.91198800
С	1.96029500	-0.34104700	2.86263900
С	-4.01302800	-1.24500000	1.61849100
0	-5.05163500	-1.46623700	-0.52778700
С	0.44898700	4.19939000	0.23757100
0	-0.28241800	2.78733900	2.05045600
С	3.13848900	-1.24540300	-0.83577500
0	3.82628400	-1.49498400	0.35960000
Н	2.80314700	0.86315700	-0.51250700
Н	1.14744000	-1.25856200	0.78433400
Н	-1.66704700	-1.50911100	1.15685300
Н	-0.37237600	0.64027200	1.56939300
Н	-0.91741500	0.04925900	-1.36597800
Н	-3.22380600	0.75405300	-1.88150000
Н	-2.06533300	2.10530500	-1.69762500
Н	-3.62464300	2.13929400	-0.83419700
Н	2.34617800	-1.36159800	2.75798000
Н	0.92168700	-0.38107500	3.21557200
Н	2.55774100	0.19594600	3.60099800
Н	-5.04229200	-1.16185000	1.96316200
Н	-3.47416000	-0.33110900	1.87458300
Н	-3.53762400	-2.09130200	2.12112100
Н	0.30294900	5.02703800	0.92955100
Н	-0.17677100	4.33806900	-0.64671100
Н	1.48945200	4.17082200	-0.09352400
Н	3.83853300	-1.04061100	-1.65913800
Н	2.53058200	-2.11621400	-1.12457000
С	4.65493400	-2.62835400	0.25595800
Н	5.41618300	-2.49780900	-0.52493700
Н	4.07217700	-3.53090800	0.02745700
Н	5.15156700	-2.75867900	1.21876100

TS to tetrazole 34

С	-2.16013828	0.47554594	-0.02168650
С	-1.34143428	-0.77373906	0.32295350
С	1.19930172	0.79224594	0.98178450
С	-0.04230028	-0.91789206	-0.47412050
С	0.99752872	0.19658194	-0.43889350
Ν	-1.34057828	1.61962294	0.38779350
С	0.38358072	2.02369094	1.15593750
Ν	0.39191772	3.16695594	1.47288950
Ν	-1.49545728	3.79991294	0.88876450
Ν	-1.83484328	2.76660694	0.49455550
0	2.54082072	1.20725294	1.14833750
0	2.19036172	-0.38311206	-0.89655950
0	-0.39227128	-1.08671406	-1.84551950
0	-2.06975028	-1.93901206	0.03743350
Н	-2.32851528	0.50346294	-1.10345350
Н	-1.09580428	-0.73110806	1.39320950
Н	0.92371872	0.07206794	1.75677750
Н	0.44024772	-1.83504406	-0.12572550
Н	0.68565172	0.99958194	-1.11646650
С	3.50845072	0.34360494	1.55113250
С	2.93691972	0.43466394	-1.78253650
С	-0.17165128	-2.28905706	-2.41550650
С	-2.57136628	-2.63047006	1.16253150
С	3.10629872	-0.98429806	2.12425950
0	4.64835872	0.72229694	1.46258250
Н	4.01388172	-1.50306506	2.42833050
Н	2.58423272	-1.58838306	1.38051850
Н	2.45998472	-0.85958106	2.99700050
Н	3.25805772	1.36153294	-1.29793950
Н	2.34833072	0.67272794	-2.67567250
Н	3.81513172	-0.14239106	-2.07408150
Н	-3.36737828	-2.06824106	1.65949550
Н	-1.77267828	-2.85480306	1.87998750
Н	-2.98574328	-3.56929306	0.79187250
С	-0.66231828	-2.29363506	-3.83138350
0	0.35007372	-3.21776406	-1.84873250
Н	-0.41353228	-3.24262406	-4.30339850
Н	-0.21146228	-1.46889806	-4.38698650
Н	-1.74521928	-2.14928906	-3.84139250
С	-3.51243928	0.53175494	0.69172050
0	-4.40138128	-0.36561106	0.07148550
Н	-3.89391628	1.55821394	0.62018350
Н	-3.36986528	0.30500894	1.75820750
Н	-5.27015628	-0.23796606	0.47486850

Tetrazole 34

С	-2.03076000	0.51935900	0.05733700
С	-1.30456400	-0.81616200	0.28437600
С	1.11119600	0.68018300	0.91717600
С	-0.03623300	-1.02624300	-0.54910200
С	1.04469200	0.04069300	-0.48278700
Ν	-1.22164400	1.63444600	0.58792000
С	0.05297800	1.73951100	1.00799400
Ν	0.25958500	2.97442200	1.39700200
Ν	-0.89735400	3.62078700	1.20721800
Ν	-1.78401900	2.84027600	0.72283300
0	2.35087100	1.32963500	1.07850500

0	2.26530800	-0.56993000	-0.80344800
0	-0.41334400	-1.15097200	-1.91577300
0	-2.14370000	-1.88223500	-0.06677800
Н	-2.17168500	0.68456600	-1.01439200
Н	-1.03726800	-0.88148300	1.34817400
Н	0.96733300	-0.06920800	1.69958100
Н	0.40404600	-1.97055100	-0.21998700
Н	0.81750100	0.82899700	-1.21147300
С	3.43240700	0.67647700	1.57903400
С	3.05590100	0.15137200	-1.73555800
С	-0.27615000	-2.36087600	-2.49981900
С	-2.67815500	-2.62705000	1.00936700
С	3.23737300	-0.64396000	2.26723800
0	4.49852800	1.22535700	1.46766000
Н	4.20655300	-0.96413900	2.64602700
Н	2.86208400	-1.39298800	1.56771500
Н	2.54000900	-0.55878200	3.10465000
Н	3.33467800	1.13601900	-1.34794000
Н	2.52281200	0.26922900	-2.68542800
Н	3.95775500	-0.43886900	-1.90086400
Н	-3.44135600	-2.06245900	1.55251600
Н	-1.88959300	-2.94592000	1.70112600
Н	-3.14307500	-3.51188600	0.57243300
С	-0.78674500	-2.32372600	-3.90740900
0	0.19963300	-3.32218300	-1.94747400
Н	-0.59980500	-3.28100500	-4.39107800
Н	-0.29736300	-1.52086500	-4.46245000
Н	-1.85953700	-2.11728900	-3.89936800
С	-3.40032800	0.57320100	0.74482900
0	-4.31617000	-0.19127000	-0.00206100
Н	-3.71692900	1.61779200	0.79153700
Н	-3.29973000	0.20774100	1.77728600
Н	-5.20263200	0.05941400	0.28886800

Ciano nitrile 35

C	2 35799700	0 03578200	0 84651200
0	-2.33788700	0.93378200	-0.04031200
C	-1.83284700	0.37416500	0.47815000
С	1.46152100	0.74879800	0.61773300
С	-0.69774900	-0.63706800	0.32076900
С	0.62591800	-0.16646200	-0.29727000
Ν	-1.40947300	1.86061300	-1.47703000
С	0.88176900	2.07793300	0.87042300
Ν	0.46465000	3.12883400	1.09544000
Ν	-1.75071900	4.17161000	-1.19381300
Ν	-1.63192800	3.05351800	-1.29278700
0	2.70333100	0.98715000	-0.01874900
0	1.42809400	-1.30581800	-0.48549300
0	-1.18414100	-1.67070300	-0.53283400
0	-2.87575500	-0.33486300	1.10992800
Н	-3.32184900	1.42144600	-0.66855200
Н	-2.52028500	0.11187400	-1.54270000
Н	-1.49590100	1.19800700	1.11919700
Н	1.58989500	0.25834900	1.58602800
Н	-0.49652800	-1.07389100	1.30237500
Н	0.44964300	0.34998800	-1.24557400
С	3.82789100	0.28862000	0.30478700
С	1.74967000	-1.57698700	-1.83931000
С	-1.24157800	-2.92452600	-0.03928900
С	-3.66192000	0.45656100	1.97601800

С	3.82736100	-0.56742600	1.53700700
0	4.77662900	0.43115400	-0.42095900
Н	4.82485500	-0.98984000	1.64484600
Н	3.10137800	-1.37706400	1.44253500
Н	3.59179800	0.01845500	2.42928000
Н	2.33043800	-0.75850400	-2.27826300
Н	0.84368500	-1.74119400	-2.43130800
Н	2.35174800	-2.48631100	-1.84114700
Н	-4.14150600	1.29146700	1.45089000
Н	-3.06088400	0.85743600	2.80150400
Н	-4.43854100	-0.19276600	2.38226500
С	-1.77349000	-3.87122500	-1.07190200
0	-0.90560900	-3.22247900	1.08082200
Н	-1.86694600	-4.86715200	-0.64211100
Н	-1.09553900	-3.90168700	-1.92802600
Н	-2.74550300	-3.52514600	-1.42925000

TS to tetrazole 36

С	-1.91174846	1.61009245	0.16075393
C	-1.54940146	0.40154345	1.01655393
C	1.39014054	0.56629645	0.21822993
С	-0.84751346	-0.70490155	0.23502493
С	0.39032354	-0.32338755	-0.57329007
Ν	-0.68018446	2.31247645	-0.17496107
С	1.21114954	2.02027445	-0.06226107
Ν	1.76824854	3.04432245	-0.28317307
Ν	0.13364954	4.35991945	-0.59340907
Ν	-0.65831446	3.53730445	-0.42075007
0	2.71495354	0.27532145	-0.18358707
0	0.99882354	-1.53736655	-0.92389707
0	-1.77745346	-1.23180955	-0.70727207
0	-2.71574446	-0.17489355	1.54535493
Н	-2.57168846	2.26870845	0.72908793
Н	-2.43067146	1.28198645	-0.74436007
Н	-0.88794046	0.73223745	1.82977093
Н	1.27788554	0.41300545	1.29556393
Н	-0.57555446	-1.49767955	0.93639893
Н	0.07493354	0.21460245	-1.47533907
С	3.42129554	-0.74190655	0.37314593
С	1.47680554	-1.59106955	-2.25779407
С	-2.22447546	-2.49097955	-0.52402407
С	-3.11389346	0.36944545	2.78744993
С	2.91512554	-1.37317855	1.63762393
0	4.45232654	-1.05024955	-0.16796207
Н	3.64200854	-2.12145655	1.94902893
Н	1.95291054	-1.86036755	1.47181393
Н	2.80521754	-0.63280055	2.43423193
Н	2.25383954	-0.84147055	-2.43516507
Н	0.65522654	-1.44358155	-2.96766707
Н	1.89859354	-2.58692055	-2.39773707
Н	-3.32719846	1.44256245	2.71754793
Н	-2.34540946	0.20918945	3.55333393
Н	-4.02631546	-0.15034755	3.08169593
С	-3.22842346	-2.84787255	-1.57740407
0	-1.85433046	-3.21296855	0.36921293
Н	-3.53563546	-3.88515855	-1.45529007
Н	-2.79815846	-2.69900055	-2.56983707
Н	-4.09775346	-2.19218355	-1.48942507

tetrazole 36

С	-1.72413700	1.58939600	0.06088100
С	-1.57452300	0.35515300	0.94924400
С	1.27558500	0.49876300	0.21744200
С	-0.91225500	-0.81957100	0.23289500
С	0.36355100	-0.49274200	-0.53438000
Ν	-0.46683400	2.31925800	-0.03972000
С	0.81010500	1.91441500	0.03062900
Ν	1.58037500	2.96830600	-0.10271800
Ν	0.75422600	4.01203700	-0.25368900
Ν	-0.47016600	3.64038800	-0.21477800
0	2.57534400	0.43076500	-0.32574900
0	1.04361800	-1.70139400	-0.74119800
0	-1.82802700	-1.33210600	-0.72905500
0	-2.83754300	-0.08778700	1.36342900
Н	-2.44385900	2.28152300	0.49785600
Н	-2.07137600	1.31216800	-0.93716800
Н	-0.96109500	0.61897600	1.82295700
Н	1.29415000	0.26695000	1.28613500
Н	-0.69515200	-1.59950200	0.96568600
Н	0.09052400	-0.04682100	-1.49970000
С	3.51207900	-0.41572900	0.17731300
С	1.47272900	-1.91350200	-2.07705100
С	-2.36792300	-2.54904200	-0.50367100
С	-3.29266100	0.51373800	2.56036000
С	3.27257200	-1.06338000	1.51075900
0	4.51171600	-0.57079000	-0.47604000
Н	4.15883300	-1.64527800	1.75816800
Н	2.40819800	-1.72863700	1.46820500
Н	3.10803000	-0.31763300	2.29282800
Н	2.18342300	-1.14483800	-2.39590900
Н	0.61661900	-1.92783300	-2.76046600
Н	1.96328300	-2.88720000	-2.09532800
Н	-3.38671200	1.60170900	2.46379800
Н	-2.61885900	0.28731200	3.39507200
Н	-4.27698500	0.09369900	2.76853900
С	-3.35683200	-2.88935500	-1.57579800
0	-2.07614300	-3.24748100	0.43569700
Н	-3.72312400	-3.90394400	-1.42861300
Н	-2.89106100	-2.79700900	-2.55894400
Н	-4.19188900	-2.18603800	-1.53524900

Energies of IRC to Tetrazole 34

Reaction path calculation complete.

Energies reported relative to the TS energy of -1252.057470

Summ	ary of reaction path io.	110wing 	
	Energy	RxCoord	
1	-0.11052	-14.70165	
2	-0.11047	-14.35121	
3	-0.11041	-14.00076	
4	-0.11035	-13.65031	
5	-0.11027	-13.29984	
6	-0.11019	-12.94937	
7	-0.11009	-12.59890	
8	-0.10998	-12.24844	
9	-0.10986	-11.89/98	
10	-0.10973	-11.54/52	
12	-0.10939	-11.19/00	
13	-0.10943	-10.04002	
14	-0.10920	-10.14580	
15	-0 10887	-9 79547	
16	-0.10864	-9.44525	
17	-0.10839	-9.09523	
18	-0.10810	-8.74562	
19	-0.10776	-8.39644	
20	-0.10732	-8.04725	
21	-0.10675	-7.69763	
22	-0.10602	-7.34764	
23	-0.10510	-6.99743	
24	-0.10397	-6.64715	
25	-0.10261	-6.29688	
26	-0.10099	-5.94671	
27	-0.09908	-5.59667	
28	-0.09682	-5.24696	
29	-0.09403	-4.90053	
30	-0.08986	-4.55520	
32	-0.08335	-3 85514	
32	-0.06519	-3 50471	
34	-0.05493	-3.15428	
35	-0.04461	-2.80384	
36	-0.03467	-2.45337	
37	-0.02552	-2.10290	
38	-0.01751	-1.75241	
39	-0.01091	-1.40191	
40	-0.00588	-1.05142	
41	-0.00247	-0.70094	
42	-0.00057	-0.35050	
43	0.00000	0.00000	
44	-0.00049	0.34984	
45	-0.00177	0.70026	
46	-0.00359	1.050/1	
47	-0.00573	1.40110	
40	-0.00003	2 10205	
50	-0 01265	2.10203	
51	-0.01483	2.80290	
52	-0.01688	3.15332	
53	-0.01879	3.50375	
54	-0.02055	3.85418	
55	-0.02215	4.20461	
56	-0.02360	4.55505	
57	-0.02492	4.90549	
58	-0.02610	5.25593	
59	-0.02716	5.60637	
60	-0.02811	5.95680	
61	-0.02896	6.30723	
62	-0.02971	6.65766	
63	-0.03038	/.0080'/	

Energies of IRC to Tetrazole 36

Reaction path calculation complete.

Energies re	ported relative to t	he TS energy	of	-1137.605658
Summary	of reaction path fol	lowing		
	Energy	RxCoord		
1	-0.03961	-17.01899		
2	-0.03945	-16.67860		
3	-0.03930	-16.33820		
4	-0.03913	-15.99780		
5	-0.03895	-15.65740		
б	-0.03876	-15.31699		
7	-0.03857	-14.97658		
8	-0.03836	-14.63617		
9	-0.03815	-14.29576		
10	-0.03792	-13.95534		
11	-0.03769	-13.61492		
12	-0.03744	-13.27450		
13	-0.03718	-12.93408		
14	-0.03690	-12.59366		
15	-0.03661	-12.25325		
16	-0.03631	-11.91283		
17	-0.03600	-11.57243		
18	-0.03567	-11.23202		
19	-0.03533	-10.89162		
20	-0.03497	-10.55123		
21	-0.03459	-10.21085		
22	-0.03419	-9.87048		
23	-0.03377	-9.53011		
24	-0.03333	-9.18975		
25	-0.03286	-8.84939		
26	-0.03236	-8.50903		
27	-0.03183	-8.16867		
28	-0.03126	-7.82832		
29	-0.03064	-7.48796		
30	-0.02997	-7.14761		
31	-0.02925	-6.80726		

32	-0.02847	-6.46690	
33	-0.02762	-6.12655	
34	-0.02670	-5.78619	
35	-0.02570	-5.44584	
36	-0.02461	-5.10548	
37	-0.02342	-4.76511	
38	-0.02212	-4.42475	
39	-0.02071	-4.08438	
40	-0.01919	-3.74403	
41	-0.01753	-3.40368	
42	-0.01574	-3.06334	
43	-0.01382	-2.72300	
44	-0.01179	-2.38266	
45	-0.00966	-2.04232	
46	-0.00749	-1.70197	
47	-0.00535	-1.36160	
48	-0.00335	-1.02121	
49	-0.00166	-0.68082	
50	-0.00046	-0.34045	
51	0.00000	0.00000	
52	-0.00054	0.34040	
55	-0.00234	1 02120	
54	-0.00330	1 36162	
55	-0.01032	1 70205	
57	-0.02419	2 04246	
58	-0 03292	2 38286	
59	-0 04245	2 72323	
60	-0.05248	3.06358	
61	-0.06268	3.40392	
62	-0.07272	3.74426	
63	-0.08217	4.08462	
64	-0.09048	4.42497	
65	-0.09687	4.76493	
66	-0.10074	5.09999	
67	-0.10300	5.43359	
68	-0.10481	5.77319	
69	-0.10634	6.11327	
70	-0.10763	6.45347	
71	-0.10872	6.79370	
72	-0.10962	7.13386	
73	-0.11035	7.47388	
74	-0.11093	7.81367	
75	-0.11140	8.15320	
76	-0.11177	8.49262	
77	-0.11207	8.83218	
78	-0.11233	9.17199	
/ Y	-0.11257	9.51201	
80	-0.11278	9.85218	
8.2 0.1	-U.II29/	10.19245 10 52070	
82	-0.11315	10.552/9	
84	-0.112/0 -0 112/0	11 21250	
85	-0.11343	11 55401	
86	-0 11377	11 89443	
87	-0 11390	12 23485	
88	-0.11402	12.57528	
89	-0.11414	12.91572	
90	-0.11425	13.25616	
91	-0.11435	13.59660	
92	-0.11445	13.93705	
93	-0.11454	14.27750	
94	-0.11462	14.61795	
95	-0.11470	14.95837	
96	-0.11477	15.29879	
97	-0.11484	15.63920	
98	-0.11490	15.97959	
99	-0.11495	16.31998	

3-Inhibitory activity against glycosidases.

Inhibitory activity of glycotetrazoles **13** and **14** was evaluated against 11 commercial glycosidases^{*} with negative results except for **14** β -glucosidase from almonds and for **13** with β -galactosidase from *Aspergillus orizae*, with weak although selective results.

	Percentage Inhibition (1mM)		
Glycosidases			
1. α -L-fucosidase (bovine kidney)	-	_	
2. α -galactosidase (coffee beans)	_	_	
 β-galactosidase (Escherichia coli) β-galactosidase (Aspergillus orizae) 	_ 16%		
5. α -glucosidase (yeast) 6. α -glucosidase (rice)	_	_	
7. amiloglucosidase (Aspergillus niger)	_	_	
8. β-glucosidase (almonds)	_	38%	
9. α -mannosidase (beans)	_	_	
10. β-mannosidase (snail)	_	_	
11. β-N-acetylglucosaminidase (beans)	_	_	

* Tests were carried out by Dr. I. Robina group, (Organic Chemistry Department) University of Seville.

Supporting Information - B

Synthesis of Tetrazole-Fused Azepanes and Quantum Chemical Topology Study on the Mechanism of the Intramolecular Cycloaddition Reaction.

M. S. Pino-Gonzalez,^{a*} A. Romero-Carrasco,^a S. Calvo-Losada,^{b*} N. Oña-Bernal,^a J. Quirante^b and F. Sarabia^a

a. Department of Organic Chemistry. Faculty of Sciences. Campus de Teatinos, s/n. University of Málaga. 29071 Málaga (Spain). E-mail: pino@uma.es
b. Department of Physical Chemistry. Faculty of Sciences. Campus de Teatinos, s/n. University of Málaga. 29071 Málaga (Spain). E-mail: asenruhup@hotmail.com

Contents: NMR spectra of the synthesized compounds

¹H-RMN (CDCl₃, 400 MHz, δ ppm)

 $^{13}\text{C-RMN}$ (CDCl_3, 100 MHz, δ ppm)

 $^{13}\text{C-RMN}$ (CDCl_3, 100 MHz, δ ppm)

 $^1\text{H-RMN}$ (CDCl₃, 400 MHz, δ ppm)

8.0

¹³C-RMN (CDCl₃, 100 MHz, δ ppm)

 1 H-RMN (CDCl₃, 400 MHz, δ ppm)

 $^{13}\text{C-RMN}$ (CDCl_3, 100 MHz, δ ppm)

¹H-RMN (CDCl₃, 400 Hz, δ ppm)

 $^{13}\text{C-RMN}$ (CDCl_3, 100 MHz, δ ppm)

 $^{13}\text{C-RMN}$ (CDCl_3, 100 MHz, δ ppm)

¹³C-RMN (CDCl₃, 100 MHz, δ ppm)

 $^{13}\text{C-RMN}$ (D_2O, 100 MHz, δ ppm) \quad DEPT

¹H-RMN (CDCl₃, 400 MHz, δ ppm)

¹H-RMN (CDCl₃, 400 MHz, δ ppm)

¹³C-RMN (CDCl₃, 100 MHz, δ ppm)

 $^{13}\text{C-RMN}$ (CDCl₃, 100 MHz, δ ppm)

 $^{13}\text{C-RMN}$ (CDCl₃, 100 MHz, δ ppm)

¹³C-RMN (CDCl₃, 100 MHz, δ ppm)

 $^{13}\text{C-RMN}$ (CDCl₃, 100 MHz, δ ppm)

 $^{13}\text{C-RMN}$ (D₂O, 100 MHz, δ ppm)

 $^{13}\text{C-RMN}$ (CDCl₃, 100 MHz, δ ppm) \quad DEPT

¹³C-RMN (D₂O, 100 MHz, δ ppm)
