Electronic Supplementary Information (ESI)

Template-free synthesis of nitrogen doped carbon materials from an organic ionic dye (Murexide) for supercapacitor application

Monazza Serwar^{a,b}, Usman Ali Rana^{c*}, Humaira M. Siddiqi^{a*}, Salah Ud-Din Khan^c, Fekri A. Ahmed Ali^d, Ahmed Al-Fatesh^d, Arturas Adomkevicius^b, Jose A. Coca-Clemente^b, Laura Cabo-Fernandez^b, Filipe Braga^b, Laurence J. Hardwick^b

*aDepartment of Chemistry, Quaid-I-Azam University Islamabad, Pakistan. Email: <u>humairas@qau.edu.pk</u>

^bStephenson Institute for Renewable Energy, Department of Chemistry, University of Liverpool, L69 7ZF, United Kingdom

*^cSustainable Energy Technologies (SET) centre, college of engineering, PO–Box 800, King Saud University, Riyadh 11421, Saudi Arabia. Email: <u>urana@ksu.edu.sa</u>

^dChemical Engineering Department, college of engineering, PO–Box 800, King Saud University, Riyadh 11421, Saudi Arabia.

Contents

Table S1: Elemental composition of NCM _(MDE) -X by CHN microanalysis
Table S2: Porosity analysis of NCM (MDE)-700, NCM (MDE)-800 and NCM (MDE)-900 samples from BET6
Figure S1: TGA of murexide under N ₂ flow
Figure S2: SEM image and EDS elemental maps of NCM (MDE)-800.
Figure S3: TEM images for NCM (MDE)-800 and their corresponding SAED pattern in two different areas of
the sample. Figure (b) shows the diffraction from the lattice in the crystalline part and (d) diffuse rings
from the amorphous area
Figure S4: N ₂ adsorption desorption Isotherms for NCM (MDE)-X samples via Brunauer-Emmett-Teller (BET)
characterization
Figure S5: PSD curves of NCM (MDE)-800 samples with inset indicating the pore size distribution up to 10
<u>nm.</u> 5
Figure S6: Bode plots for NCM _(MDE) -700, NCM _(MDE) -800 and NCM _(MDE) -900 electrodes
Figure S7: Cyclic voltammograms of NCM _(MDE) -X: (a) NCM _(MDE) -700, (b) NCM _(MDE) -800, and (c) NCM _(MDE) -
<u>900 at different scan rates in 1.0 M H_2SO_{4}</u> 7
Figure S8: Electrochemical impedance spectra; (a) Nyquist plot, (b) Nyquist plot: magnified region 0-
0.8Ω) and (c) Bode plot of NDM _(MDE) -800 electrode show the effect of long CD cycling upto 10,000cycles
<u>at 10A g⁻¹.</u>
Figure S9: Cyclic voltammograms of NCM (MDE)-800 electrode at different scan rates in different
<u>electrolytes; (a) 1.0 M H₂SO₄, (b) 6.0 M KOH and (c) 0.5 M Na₂SO₄8</u>

Sample ID	С	н	Ν
NCM _(MDE) -700	61.64	1.78	19.51
NCM _(MDE) -800	61.29	1.62	13.75
NCM _(MDE) -900	63.34	1.37	7.17

Table S1: Elemental composition of $NCM_{(MDE)}$ -X by CHN microanalysis

Thermal studies

Figure S1: TGA of murexide under N_2 flow.

Morphology characterization

Figure S3: TEM images for NCM $_{(MDE)}$ -800 and their corresponding SAED pattern in two different areas of the sample. Figure (**b**) shows the diffraction from the lattice in the crystalline part and (**d**) diffuse rings from the amorphous area.

BET Isotherms

Figure S4: N₂ adsorption desorption Isotherms for NCM (MDE)-X samples via Brunauer-Emmett-Teller (BET) characterization.

Pore Volume / $cm^3 g^{-1}nm^{-1}$ 0.04 $\mathrm{NCM}_{(\mathrm{MDE})}$ -700 NCM_(MDE)-800 NCM (MDE) -900 0.03 Lore Volume / cm¹ 0.03 bore Volume / cm¹ 0.02 0.00 0.02 0.01 Pore Diameter / nn 0.00 100 Ó 50 150 200 250 300 Pore Diameter / nm

PSD curves

Figure S5: PSD curves for NCM (MDE)-700, NCM (MDE)-800 and NCM (MDE)-900. The inset displays the pore size distribution data for these materials up to 10 nm.

BET Parameter	NCM _(MDE) -700	NCM _(MDE) -800	NCM _(MDE) -900
Surface Area (m ² g ⁻¹)	127.88	286.51	306.68
Average pore diameter (nm)	11.46	10.09	9.39
t-plot micropore volume (cm ³ g ⁻¹)	0.042	0.11	0.11
Total pore volume ($cm^3 g^{-1}$)	0.094	0.13	0.16
Average particle size (nm)	46.92	20.94	19.56

Table S2: BET analysis data for NCM $_{\rm (MDE)}\text{-}700,$ NCM $_{\rm (MDE)}\text{-}800$ and NCM $_{\rm (MDE)}\text{-}900.$

Electrochemical Studies

Figure S6: Bode plots for NCM_(MDE)-700, NCM_(MDE)-800 and NCM_(MDE)-900 electrodes

Figure S7: Cyclic voltammograms of (a) NCM_(MDE)-700, (b) NCM_(MDE)-800, and (c) NCM_(MDE)-900 at different scan rates in 1.0 M H_2SO_4 .

Figure S8: Electrochemical impedance spectra; (a) Nyquist plot, (b) Nyquist plot: magnified region 0-0.8 Ω) and (c) Bode plot of NDM_(MDE)-800 electrode show the effect of long CD cycling upto 10,000cycles at 10A g⁻¹.

Figure S9: Cyclic voltammograms of NCM ($_{(MDE)}$ -800 electrode at different scan rates in different electrolytes; (a) 1.0 M H₂SO₄, (b) 6.0 M KOH and (c) 0.5 M Na₂SO₄

No major shape changes are observed in the CV curves recorded in 1 M $H_2SO_{4(aq)}$ and 6 M KOH_(aq)with increasing scan rate, particularly at high scan rate of 200mV s⁻¹ Figure S9. This indicates that NCM_(MDE)-800 has high rate capability in both acidic and basic electrolyte media. In contrast, the CV curves recorded in 0.5 M Na₂SO_{4(aq)}, clearly show a distortion in the shape as the scan rate increases, indicating a poor rate capability in this electrolyte system when compared with acid and basic media.