Electronic Supplementary Information: Bending Energy of 2D Materials: Graphene, MoS_2 and Imogolite

Rafael I. González, *^{*a,b*}, Felipe J. Valencia^{*b,c,d*}, José Rogan^{*b,c*}, Juan Alejandro Valdivia^{*b,c*}, Jorge Sofo^{*e*}, Miguel Kiwi^{*b,c*} and Francisco Munoz^{*b,c*}

^a Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor, Santiago, Chile. E-mail: rafael.gonzalezvaldes@mayor.cl

^b Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA) Santiago, Chile.

^c Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.

^d Núcleo de Matemáticas, Física y Estadítica, Facultad de Ciencias, Universidad Mayor, Manuel Montt 367, Providencia, Santiago, Chile

^e Department of Physics and Material Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

Figure S1: Energy vs. curvature of imogolite sheets with $N_{\theta} = 4$ and 6. For both cases the minimum of the bending energy occurs for $9 < N_{\theta} < 10$. The dashed vertical lines, and the numbers that label them, correspond to the curvature radius of a completely closed nanotube with that N_{θ} value. Green Al; red O; yellow Si; and light gray H.

Figure S2: Illustration of the bending process: the external force has a curvature radii of 12 nm and is applied to a graphene ribbon 8 nm wide.