Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

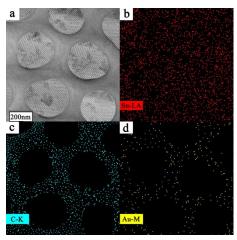


Fig. S1. (a) STEM image of $Au@SnO_2/C_{60}/SnO_2$ nanocomposite film and (b, c, d) corresponding elemental maps of Sn, C and Au elements.

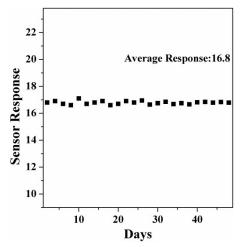


Fig. S2 Long-term stability of response of the ethanol gas sensor based on $\underline{Au@SnO_2/C_{60}/SnO_2}, \underline{nanocomposite film in 0.5} \ ppm \ of \ ethanol \ gas.$

 $\begin{tabular}{lll} \textbf{Table} & \textbf{S1} & \textbf{Ethanol} & \textbf{sensor} & \textbf{response} & \textbf{of} & \textbf{the} & \textbf{recently} & \textbf{developed} \\ \textbf{semiconductor} & \textbf{sensors} & \textbf{consisting} & \textbf{of} & \textbf{a} & \textbf{variety} & \textbf{of} & \textbf{materials}. \\ \end{tabular}$

Sensing materials	Temperature (°C)	C _{ethanol} (ppm)	$S\left(R_a/R_g\right)$	Response time (s)
SnO ₂ /RGO film ¹⁰	300	0.5	0.5	\
SnO ₂ -TiO ₂ ³⁷	43	1	1.2	2400
$Ag@SnO_2^{35}$	RT	0.5	0.3	52
RGO/SnO ₂ 38	RT	0.5	0.2	300
SnO ₂ -PDDAC ³⁹	RT	1	0.3	88
Porous C/SnO ₂ 11	RT	0.5	2.4	100
In this work	RT	0.5	16.8	36
	•			

10

5