Supplementary Materials for Publication

Compositional Effect on the Fabrication of Ag_xPd_{l-x} Alloy

Nanoparticles on c-Plane Sapphire at Distinctive Stages of the Solid-

State-Dewetting of Bimetallic Thin Films

Puran Pandey¹, Sundar Kunwar¹, Mao Sui¹, Sushil Bastola¹ and Jihoon Lee^{1,2*}

¹ College of Electronics and Information, Kwangwoon University, Nowon-gu Seoul 01897, South Korea ² Institute of Nanoscale Science and Engineering, University of Arkansas, Fayetteville AR 72701, USA. *Correspondence e-mail: jihoonleenano@gmail.com

Note added after first publication: This Electronic Supplementary Information file replaces that originally published on 7th December 2017, and contains a corrected Table S7 and Fig. S14.

Figure S1 Bare sapphire after the degassing at 350 °C for 30 mins. (a) AFM side-view of $3 \times 3 \mu m^2$. (a-1) Corresponding AFM top-view. (b) Raman spectrum of the bare sapphire. In total, 6 peaks are observed in the spectrum: 379, 417, 429, 449, 573 and 751 cm⁻¹. The 416 cm⁻¹ peak is induced by A_{1g} vibrational mode and the other peaks are induced by the E_g vibrational mode. (c) Reflectance spectrum of the bare sapphire.

Figure S2 Ag-Pd bimetallic nanostructures fabricated at 400 °C for 120 s with the deposition thickness of 15 nm and bilayer composition as labelled. (a) – (c) AFM top-views of $3 \times 3 \ \mu m^2$. (a-1) – (c-1) Corresponding line-profiles.

Figure S3 Ag-Pd bimetallic nanostructures fabricated between 500 and 800 °C for 120 s with the deposition thickness of 15 nm. (a) – (l) AFM top-views of $3 \times 3 \ \mu\text{m}^2$. (a-1) – (l-1) Corresponding line-profiles.

Figure S5 Ag-Pd bimetallic nanostrucutres fabricated by the control of deposition thickness between 2 and 30 nm with $Pd_{0.25}Ag_{0.75}$ bilayer composition. The samples were annealed at 650 °C for 120 s. (a) – (h) AFM top-views of 3 × 3 μ m².

Figure S6 Cross-sectional line profiles of the AFM top-views shown in Fig. S5.

Figure S7 Quantative analysis for the Ag-Pd bimetallic nanostrucutres fabricated with the control of deposition thickness as shown in Fig. S5. Diameter (left column) and height (right colume) distribution histograms

Figure S8 Ag-Pd bimetallic nanostrucutres fabricated by the control of deposition thickness between 1 and 30 nm with $Pd_{0.75}Ag_{0.25}$ bilayer composition. The samples were annealed at 650 °C for 120 s. (a) – (h) AFM top-views of 3 × 3 μ m².

Figure S9 Cross-sectional line profiles of the AFM top-views shown in Fig. S8.

Figure S10 Quantative analysis for the Ag-Pd bimetallic nanostrucutres fabricated with the control of deposition thickness as shown in Fig. S8. Diameter (left column) and height (right colume) distribution histograms

Figure S11 Ag-Pd bimetallic nanostrucutres fabricated by the varation of the annealing durations between 0 and 3600 s at 650 °C with the deposition thickness of 10 nm and Pd_{0.25}Ag_{0.75} bilayer composition. (a) – (g) AFM top-views of $5 \times 5 \ \mu m^2$.

Figure S12 Cross-sectional line profiles of the AFM top-views shown in Fig. S11.

Figure S13 Fabrication of Ag-Pd bimetallic nanostrucutres by the varation of the annealing durations between 0 and 3600 s at 650 °C with the deposition thickness of 10 nm and Pd_{0.75}Ag_{0.25} bilayer composition. (a) – (g) AFM top-views of $5 \times 5 \ \mu\text{m}^2$.

Figure S14 Cross-sectional line profiles of the AFM top-views shown in Fig. S13.

Table S1 Summaries of Rq and SAR of the Ag, Pd bimetallic nanostructures fabricated at the control of temperature between 500 and 800 °C for 360 s with the bilayer composition of $Ag_{0.75}Pd_{0.25}$, $Ag_{0.50}Pd_{0.50}$ and $Ag_{0.25}Pd_{0.75}$ with 15 nm total thickness.

Tempe rature	Ag _{0.75} Pd _{0.25}		Ag _{0.75} Pd _{0.25}			Ag _{0.25} Pd _{0.75}			
[°C]	Rq	SAR	Coverage	Rq	SAR	Coverage	Rq	SAR	Coverage
400	7.23	1.7	97.22	1.92	0.59	99.87	0.72	0.12	100
500	13.61	5.07	84.32	2.33	0.72	99.64	0.69	0.11	100
600	24.56	9.83	49.28	3.67	0.65	94.97	0.91	0.13	99.63
700	28.55	10.52	31.73	28.3	10.68	32.15	20.46	9.11	32.73
800	19.46	9.49	23.42	26.16	10.86	25.69	23.38	10.73	30.16

Table S2 Summary of average reflectance of the Ag, Pd bimetallic nanostructures fabricated at the control of temperature between 500 and 800 °C for 360 s with the deposition of $Ag_{0.75}Pd_{0.25}$, $Ag_{0.50}Pd_{0.50}$ and $Ag_{0.25}Pd_{0.75}$.

Temperature [°C]	Ag _{0.75} Pd _{0.25}	$Ag_{0.50}Pd_{0.50}$	Ag _{0.25} Pd _{0.75}
500	30.47	38.22	37.53
600	22.56	31.15	36.86
700	18.76	9.31	10.25
800	11.33	9.08	11.23

DA		Pd _{0.25} Ag	0.75	Pd _{0.75} Ag _{0.25}		
[nm]	Rq	SAR	Coverage	Rq	SAR	Coverage
1	2.06	0.61	-	0.96	1.49	-
2	4.23	2.73	87.95	1.69	5.36	74.95
3	8.92	4.64	80.9	5.38	8.08	49.48
4	9.73	10.58	69.02	7.48	8.77	39.77
6	13.87	15.31	44.64	17.6	7.42	32.57
8	14.73	9.39	39.55	13.97	6.79	43.16
10	14.56	12.55	43.25	18.97	7.09	41.85
20	15.37	8.11	74.6	16.53	4.48	70.45
30	41.04	16.57	28.93	49.25	8.66	28.39

Table S3 Summary of Rq and SAR of the samples fabricated at 650 °C for 360 s with variousdeposition thickness of Ag, Pd bi-metallic alloy of $Pd_{0.25}Ag_{0.75}$ and $Pd_{0.75}Ag_{0.25}$.

Table S4 Summary of Rq and SAR of the samples fabricated at 650 °C for 360 s with various deposition thickness of Ag, Pd bi-metallic alloy of $Pd_{0.25}Ag_{0.75}$ and $Pd_{0.75}Ag_{0.25}$. D: diameter; H: height

DA	Pd _{0.25}	$Ag_{0.75}$	Pd _{0.75} Ag _{0.25}		
[nm]	D	Н	D	Н	
2	38.12	3.51	43.22	8.59	
3	83.57	18.43	72.03	15.81	
4	101.26	22.42	104.79	27.56	
6	125.35	31.22	166.37	43.11	
8	166.3	36.16	212.47	45.14	
10	193.77	54.24	217.6	48.25	

DA [nm]	Pd _{0.25} Ag _{0.75}	Pd _{0.75} Ag _{0.25}
1	8.75	8.36
2	9.72	8.58
3	10.74	11.74
4	11.84	12.03
6	15.03	14.09
8	16.5	13.11
10	16.3	17
20	24.39	22.35
30	9.13	8.64

Table S5 Summary of average reflectance of the samples fabricated at 650 °C for 360 s with various deposition thickness of Ag, Pd bi-metallic alloy of $Pd_{0.25}Ag_{0.75}$ and $Pd_{0.75}Ag_{0.25}$.

DA [nm]	Pd _{0.25} Ag _{0.75}	Pd _{0.75} Ag _{0.25}
1	1949.16	2396.05
2	2156.49	2200.71
3	1741.27	1887.58
4	1715.87	1550.67
6	1261.07	1213.89
8	1380.83	960.31
10	1121.68	1047.5
20	1000.64	593.93
30	1037.53	755.4

Table S6 Summary of Raman intensities of the samples fabricated at 850 °C for 360 s withvarious deposition thickness of Ag, Pd bi-metallic alloy of $Pd_{0.25}Ag_{0.75}$ and $Pd_{0.75}Ag_{0.25}$.

Annealing Duration	Pd _{0.25} Ag _{0.75}			Pd _{0.75} Ag _{0.25}		
[s]	Rq	SAR	Coverage	Rq	SAR	Coverage
0	28.7	15.52	51.37	18.44	6.13	61.77
60	29.97	16.07	48.95	19.3	6.57	54.7
240	28.91	15.61	48.17	20	6.84	51.5
450	26.73	14.27	45.58	19.06	7.19	49.57
900	23.86	11.82	38.23	18.82	6.59	50.72
1800	21.89	10.92	35	15.49	4.96	48.77
3600	21.06	10.64	34.3	16.31	5.04	47.43

Table S7 Summary of Rq and SAR of the samples fabricated with the control of annealingduration at 800 °C with various Ag, Pd bi-metallic alloy of $Pd_{0.25}Ag_{0.75}$ and $Pd_{0.75}Ag_{0.25}$

Table S8 Summary of average reflectance of the samples fabricated with the control ofannealing duration at 800 °C with various Ag, Pd bi-metallic alloy of $Pd_{0.25}Ag_{0.75}$ and $Pd_{0.75}Ag_{0.25}$

Annealing Duration [s]	Pd _{0.25} Ag _{0.75}	Pd _{0.75} Ag _{0.25}
0	20.3	18.16
60	18.55	16.82
240	18.22	16.58
450	17.6	16.48
900	16.75	16.44
1800	14.05	16.34
3600	12.16	16.69