Electronic Supplementary Information **Fig. S1**: Pore size distribution patterns of the bare and Pd deposited semiconductor samples Fig. S2: Band gap energy measurements for Pd-deposited semiconductor samples ## Calculation of the theoretical photocurrent of Pd-deposited semiconductor samples The single photon energy is calculated from Equation S1 $$(\lambda) = h X(C/\lambda) \tag{S1}$$ Where $E(\lambda)$ is the photon energy (J), h is Planck's constant (6.626×10⁻³⁴ J s), C is the speed of light (3×10⁸ m s⁻¹) and λ is the photon wavelength (m). The UV photon flux is then calculated according to Equation S2 $$Flux(\lambda) = (\lambda)/E(\lambda)$$ (S2) Where $Flux(\lambda)$ is the UV light photon flux (m⁻² s⁻¹ nm⁻¹), and $P(\lambda)$ is the UV light flux (W m⁻² nm⁻¹). The theoretical maximum photocurrent density under UV light illumination, J_{max} (A m⁻²), is then calculated by integrating the UV photon flux, shown in Equation S3: $$Jmax = e X \int_{\lambda 2}^{\lambda 1} Flux(\lambda) d\lambda$$ (S3) Where λ_I is the absorption edge of semiconductor, λ_2 is the lower limit of the UV irradiation, and e is the elementary charge of electron (1.602×10⁻¹⁹ C). The theoretical photocurrent for synthesized Pd deposited semiconductor samples were calculated accordingly.