Electronic Supplementary Information

Fig. S1: Pore size distribution patterns of the bare and Pd deposited semiconductor samples

Fig. S2: Band gap energy measurements for Pd-deposited semiconductor samples

Calculation of the theoretical photocurrent of Pd-deposited semiconductor samples

The single photon energy is calculated from Equation S1

$$(\lambda) = h X(C/\lambda) \tag{S1}$$

Where $E(\lambda)$ is the photon energy (J), h is Planck's constant (6.626×10⁻³⁴ J s), C is the speed of light (3×10⁸ m s⁻¹) and λ is the photon wavelength (m).

The UV photon flux is then calculated according to Equation S2

$$Flux(\lambda) = (\lambda)/E(\lambda)$$
 (S2)

Where $Flux(\lambda)$ is the UV light photon flux (m⁻² s⁻¹ nm⁻¹), and $P(\lambda)$ is the UV light flux (W m⁻² nm⁻¹).

The theoretical maximum photocurrent density under UV light illumination, J_{max} (A m⁻²), is then calculated by integrating the UV photon flux, shown in Equation S3:

$$Jmax = e X \int_{\lambda 2}^{\lambda 1} Flux(\lambda) d\lambda$$
 (S3)

Where λ_I is the absorption edge of semiconductor, λ_2 is the lower limit of the UV irradiation, and e is the elementary charge of electron (1.602×10⁻¹⁹ C).

The theoretical photocurrent for synthesized Pd deposited semiconductor samples were calculated accordingly.