Supplementary Material

A turn-on fluorescent probe for Cd²⁺ detection in aqueous environment based on imine functionalized nanoscale metal-organic

framework

Jintong Wang, Tifeng Xia, Xin Zhang, Qi Zhang, Yuanjing Cui, Yu Yang*, and Guodong Qian*

State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science & Engineering, Zhejiang University, Hangzhou 310027, China

* Corresponding author. Tel.: +86-571-87952334; Fax: +86-571-87951234. E-mail address: gdqian@zju.edu.cn (G. Qian), yuyang@zju.edu.cn (Y. Yang)

Fig. S1 TGA analysis of UiO-66-NH₂ (red line) and UiO-66-N=CH₂ (black line).

Fig. S2 N_2 sorption isotherms of UiO-66-NH₂(1) andUiO-66-N=CH₂(2) at 77 K. Solid symbols: adsorption, open symbols: desorption.

Fig. S3 FT-IR spectra of UiO-66-NH₂(red) and UiO-66-N=CH₂(black).

Fig. S4 Full ¹H-NMR spectra (500 MHz) of UiO-66-NH₂ (a) and UiO-66-N=CH₂ (b) and partial spectra of UiO-66-NH₂ (c) and UiO-66-N=CH₂ (d) between 7.2-8.3 ppm.

Proton	Chemical shift,	Predicted	Actual	Percent of
	ppm(splitting)	Integration	Integration	functionalization
H _A	7.90 (doublet)	1 H	1.00 H	
H _B	7.39 (multiplet)	1 H	0.99 H	
$\mathbf{H}_{\mathbf{C}}$	7.77 (doublet)	1 H	1.02 H	
H _D	7.85 (doublet)	2 H	0.64 H	32 %
DMF	8.09 (singlet)			
H ₂ O	5.00 (singlet)			

Table S1 Protons and their ¹H NMR chemical shifts of UiO-66-N= CH_2 and the calculated percent of imine functionalization.

Fig. S5 Day-to-day stability of fluorescent intensity (at 468 nm) of UiO-66-N=CH₂ (1.0 mg/mL) in H₂O (a), and the emission spectra of UiO-66-N=CH₂ in different pH aqueous solution (b), $\lambda_{ex} = 342$ nm.

Fig. S6 The luminescent emission spectra of UiO-66-N=CH₂ (1 mg/mL) dispersed in different metal ion solutions (500 μ M).

Fig. S7 The replicating experiments of blank solutions (a) and the fitting curve (b) of the emission intensity (468 nm) of UiO-66-N=CH₂ in Cd²⁺ solutions with concentrations from 0 to 50 μ M.

Linear Equation: $y = 9.805 \times 10^6 \times x + 2080.6$;

Slope = 9.805 × 10⁶ M⁻¹;
SD =
$$\sqrt{\frac{\sum (F - F_0)^2}{N - 1}}$$
 = 1.11 (N=11);
LOD = 3SD/Slope = 0.336 µM

Slope is the slope of the fitting curve in Fig. S7b; SD is the standard deviation for replicating detections of blank solutions (Fig. S7a); F is the fluorescence intensity of $UiO-66-N=CH_2$ in water and F_0 is the average intensity of 11 times blank experiment.

Fig. S8 MTT experiment of **UiO-66-N=CH**₂. PC12 cell viability after exposure to different concentrations of **UiO-66-N=CH**₂ for 24 hours.

Table S2 Quantum yields of UiO-66-N=CH₂ and Cd²⁺ (@ UiO-66-N=CH₂ when excited by 390 nm.

Sample	Quantum yield	
UiO-66-N=CH ₂	2.53 %	
Cd ²⁺ @ UiO-66-N=CH ₂	5.38 %	

Integration time: 10000 ms.

Integration range of absorption wavelength: 350-410 nm.

Integration range of emission wavelength: 411-600 nm.

Fig. S9 (a) UV-vis absorption spectra of UiO-66-N=CH₂ solution in the absence and presence of Cd^{2+} ; (b) UV-vis spectra of UiO-66-N=CH₂ solution in the absence and presence of different metal ions.

Fig. S10 The luminescent emission spectra of UiO-66-NH₂ (1 mg/mL) in the absence and presence of Cd²⁺ (500 μ M).

Fig. S11 Optical microscopy images of PC12 cells a) without treatment, b) incubated with 10^{-3} M Cd²⁺, c) incubated with 50 µg/mL **UiO-66-N=CH**₂ and d) subsequent addition of 10^{-3} M Cd²⁺. Optical bright field microscopy image for a1, b1, c1 and d1, optical luminescent field microscopy image illuminated with 365 nm light for a2, b2, c2 and d2.