Electronic Supplementary Information

Sheetlike Gold nanostructures/Graphene Oxide Composites *via* a One-Pot Green Fabrication Protocol and Their Interesting Two-

Stage Catalytic Behaviors

Guangwei Geng,^{ab} Penglei Chen,^{*abc} Bo Guan,^b Yu Liu,^{ab} Changchun Yang,^a Nannan Wang^b and Minghua Liu^{bc}

^aCollege of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Road, Henan, Zhengzhou 450001, China. E-mail: <u>cpl@zzu.edu.cn</u>

^bBeijing National Laboratory for Molecular Science, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. E-mail: <u>chenpl@iccas.ac.cn</u>

^cUniversity of Chinese Academy of Sciences, Beijing 100049, China.

Fig. S1 EDX elemental analysis of our Au/GO nanocomposites.

Fig. S2 The typical SEM image of the samples fabricated without the involvement of GO nanosheets.

Fig. S3 The UV-vis spectra of our Au/GO nanocomposites.

Fig. S4 The reduction of 4–nitrophenol (4–NP) by $NaBH_4$ monitored by real–time UV–vis spectra. The reaction was conducted without the use of catalysts.

Fig. S5 The catalytic reduction of 4–nitrophenol (4–NP) by NaBH₄ monitored by real–time UV–vis spectra. The reaction was conducted in the presence of our Au nanoplates/GO nanocomposites.

Fig. S6 The real-time UV-vis spectra (a), the catalytic performance (b) and the corresponding kinetic linear simulation curve (c) of our catalysts towards the reduction of 4–NP, wherein the Au/GO nanocomposites have been reduced by NaBH₄ firstly.

Fig. S7 The SEM (a) and HRTEM (b) images of our Au/GO catalysts after their catalytic uses.