Supporting Information

Fabrication of a new metal-organic framework for sensitive sensing

of nitroaromatics and efficient dye adsorption

Wei-Ping Wu^{a*}, Jian Wu^b, Jian-Qiang Liu^{c*}, Manoj Trivedi^d and Abhinav Kumar^{d*}

Sensing Method

The photoluminescence sensing were performed as follows: the photoluminescence properties of **1** were investigated in N,N-dimethylformamide (DMF)/H₂O emulsions at room temperature using a RF-5301PC spectrofluorophotometer. The **1**@DMF/H₂O elusions were prepared by adding 5 mg of **1** powder into 3.00 mL of DMF and then ultrasonic agitation the mixture for 30 min before testing.

Scheme S1 view of the two coordination modes of H₄L ligand in this work.

Fig. S1 view of the 3D network along the *ab*-plane.

Based upon the single crystal structure analysis, **1** has nano-sized pores. To reveal the thermal stability of these porous compounds, thermo-gravimetric experiments were carried out with pure single crystal samples under N_2 atmosphere conditions at a rate of 10 °C min⁻¹ over a range of 25–800 °C. In Fig. S2, the TGA curve of **1** shows two regions of weight loss. The first weight loss between 100 and 350 °C is about 28.6 %, which corresponds to the loss of three coordinated and a half free DMF molecules, calculated to be28.1%. Above 350 °C, the compound decomposed gradually.

Fig. S2 view of TGA in 1.

Gas Sorption

The nitrogen adsorption-desorption measurements were carried out at liquid nitrogen temperature (77 K) by using an automatic volumetric adsorption equipment (Micromeritics, ASAP2020). Low pressure (< 800 torr) gas sorption isotherms were performed using a Micromeritics ASAP 2020 surface area and pore size analyzer. Pore size distribution data were obtained from the N₂ sorption isotherms based on the DFT model in the Micromeritics ASAP 2020 software package (assuming slit pore geometry). An ultra-high purity (UHP, 99.999% purity) grade of N₂ gas was used throughout the adsorption experiments. Prior to the measurements, all the samples were degassed at 80 °C for 10 h to remove the adsorbed impurities.

Fig. S3 view of the N_2 adsorption isotherms at 77 K.

Fig. S4 view of the PL for solid state of 1 and H_4L at room temperature.

Fig. S5 Emission spectra of 1 at different solvents.

Fig. S6 Stern–Volmer plot for the fluorescence quenching of **1** upon the addition of 2,4-DNP.

Fig. S7 Stern–Volmer plot for the fluorescence quenching of 1 upon the addition of PNP.

Fig. S8 Stern–Volmer plot for the fluorescence quenching of 1 upon the addition of MNP.

Fig. S9 Stern–Volmer plot for the fluorescence quenching of **1** upon the addition of TNP.

Fig. S10 Luminescent quenching of **1** dispersed in ethanol by the gradual addition of 1 mM solution of 1,3-DNB in DMF.

Fig. S11 Stern–Volmer plot for the fluorescence quenching of 1 upon the addition of 1,3-DNB.

Fig. S12 Luminescent quenching of **1** dispersed in ethanol by the gradual addition of 1 mM solution of 2,4-DNT in DMF.

Fig. S13 Stern–Volmer plot for the fluorescence quenching of 1 upon the addition of 2,4-DNT.

Fig. S14 Luminescent quenching of **1** dispersed in ethanol by the gradual addition of 1 mM solution of 2,6-DNT in DMF.

Fig. S15 Stern–Volmer plot for the fluorescence quenching of 1 upon the addition of 2,6-DNT.

Fig. S16 Luminescent quenching of **1** dispersed in ethanol by the gradual addition of 1 mM solution of 2-NT in DMF.

Fig. S17 Stern–Volmer plot for the fluorescence quenching of 1 upon the addition of 2-NT.

Fig. S18 Luminescent quenching of **1** dispersed in ethanol by the gradual addition of 1 mM solution of 4-NT in DMF.

Fig. S19 Stern–Volmer plot for the fluorescence quenching of 1 upon the addition of 4-NT.

Fig. S20 Luminescent quenching of **1** dispersed in ethanol by the gradual addition of 1 mM solution of NB in DMF.

Fig. S21 Stern–Volmer plot for the fluorescence quenching of 1 upon the addition of NB.

Fig. S22 Luminescent quenching of H_4L dispersed in ethanol by the gradual addition of 1 mM solution of 2,4-DNP in DMF.

Fig. S23 Emission spectra of 1 at different metal ions.

Fig. S24 Comparison of the fluorescence lifetime studies of original samples (a) and Fe^{3+} -infused 1 in 10^{-2} Fe(NO₃)₃ DMF solution (b).

Fig. S25. (a) O1s XPS spectra of the original 1 (black) and $1@Fe^{3+}$ (red); (b) XPS spectra of the $1@Fe^{3+}$ (red) and original 1 (black).

Fig. S26 view of the IR in different inclusions.

Fig. S27 (a) view of the PXRD for the sample 1 (black: simulated; red: as-synthesized; blue: dehydrated ones); (b) view of the PXRD pattern of 1 at DMF and H₂O suspension; (c) view of the PXRD pattern of 1 at Fe³⁺ suspension; (c) view of the PXRD pattern of 1 dispersed in different explosives.

Fig. S29 view the cycle adsorption for the MB in 1. Table S1. Crystallographic data and structure refinement details for 1

Crystal system	Orthorhombic		
Space group	$P2_{1}2_{1}2_{1}$		
Crystal color	colorless		
<i>a</i> , Å	14.0179(19)		
b, Å	27.727(4)		
<i>c</i> , Å	14.0053(19)		
α, °	90		
β, °	90		
γ, °	90		
<i>V</i> , Å ³	5443.6(13)		
Ζ	2		
$\rho_{calcd}, g/cm^3$	1.033		
μ , mm ⁻¹	0.819		
<i>F</i> (000)	1688		

θ Range, deg	2.10-25.40
Reflection collected	60770
Independent reflections (R_{int})	0.0747
Reflections with $I > 2\sigma(I)$	17117
Number of parameters	530
$R_1, wR_2 (I > 2\sigma(I))^*$	0.0786, 0.1879
R_1 , wR_2 (all data) ^{**}	0.1278, 0.2157

* $R = \sum (F_{\rm o} - F_{\rm c}) / \sum (F_{\rm o}), ** wR_2 = \{ \sum [w(F_{\rm o}^2 - F_{\rm c}^2)^2] / \sum (F_{\rm o}^2)^2 \}^{1/2}.$

Table S2. Selected bond distances (Å) and angles (deg) for 1				
1				
Cd(1)-O(5)	2.198(10)	Cd(1)-O(7)	2.208(10)	
Cd(1)-O(4)	2.284(10	Cd(1)-O(1)	2.351(9)	
Cd(1)-O(3)	2.363(10)	Cd(1)-O(2)	2.453(9)	
Cd(2)-O(8)	2.224(10)	Cd(2)-O(6)	2.250(10)	
Cd(2)-O(1)#1	2.312(11)			
1				
O(1)-Cd(1)-O(4)	142.0(4)	O(1)-Cd(1)-O(5)	106.2(4)	
O(2)-Zn(1)-O(7)	155.5(4)	O(5)-Cd(1)-O(7)	97.2(5)	
O(8)-Cd(2)-O(9)	93.0(6)	O(8)-Cd(2)-O(11)	174.6(6)	
O(6)-Cd(2)-O(10)	173.9(5)	O(2)-Cd(2)-O(8)	88.0(4)	
		O(7)#3-Zn(1)-O(11)	176.8(6)	
		O(6)#5-Zn(2)-O(8)	103.4(5)	

symmetry codes: #1 = -x, -y, z.

Material	Sensitivity	Reference
Eu(acac) ₃ @Zn(L2) ₂ (L2 =ditopic pyridyl)	5×10-3 M	1
{ $[H_2N(CH_3)_2]Eu(H_4L)(H_2O)$ } (H_4L= tetrakis[4-	2×10-4 M	2
(carboxyphenyl)		
oxamethyl]methane acid		
$Eu(L)_3$ (L= 4'-(4-carboxyphenyl)-2,2': 6',2"-	10 ⁻⁴ M	3
terpyridine)		
[Eu(BTPCA)(H ₂ O)]·2DMF·3H ₂ O	10 ⁻⁵ M	4
$(H_3BTPCA = 1, 1', 1''-(benzene-1, 3, 5-$		
triyl)tripiperidine-4-carboxylic acid		
$[Al(OH)(BDC).xsovl] (H_2BDC=1,4-$	0.9×10 ⁻⁶ M	5
benzenedicarboxylic acid)		
$\{[LnCd_2(DTPA)_2(H_2O)_4] \cdot 4H_2O$	1.5×10 ⁻⁵ M	6
carbon nanoparticles (CNPs)	0.32×10 ⁻⁶ M	7
Fluorescent Gold Nanoclusters	5.4×10 ⁻⁶ M	8
$[Cd_3(dpa)(DMF)_2(H_2O)_3]$ ·DMF	1.75×10 ⁻⁴ M	9
$Zn_3L_3(DMF)_2$	10 ⁻⁵ M	10
[[Eu ₂ (MFDA) ₂ (HCOO) ₂ (H ₂ O) ₆]·H ₂ O	1.0×10 ⁻⁴ M	11
$[Tb_4(OH)_4(DSOA)_2(H_2O)_8] \cdot (H_2O)_8$	10 ⁻⁶ M	12
1	2.2×10 ⁻⁵ M	In this work

Table S3 Comparison of the selected materials in detective sensitivity for Fe³⁺ ions

- [1] G. G. Hou, Y. Liu, Q. K. Liu, J. P. Ma and Y. B. Dong, Chem. Commun.2011, 47, 10731-10733.
- [2] S. Dang, E. Ma, Z.M. Sun and H. J. Zhang, J. Mater. Chem. 2012, 22, 16920-16926.
- [3] M. Zheng, H. Q. Tan, Z. G. Xie, L. G. Zhang, X. B. Jing and Z. C. Sun, ACS Appl. Mater. Interfaces, 2013, 5, 1078-1083.
- [4] Q. Tang, S. X. Liu, Y. W. Liu, J. Miao, S. J. Li, L. Zhang, Z. Shi and Z. P. Zheng, *Inorg. Chem.*2013, 52, 2799-2801.
- [5] C. X. Yang, H. B. Ren and X. P. Yan, Anal. Chem. 2013, 85, 7441-7446.
- [6] Q. Liu, F. Wan, L. X. Qiu, Y. Q. Sun and Y. P. Chen, RSC Adv., 2014, 4, 27013-27021.
- [7] K. G. Qu, J. S. Wang, J. S. Ren and X. G. Qu, Chem. Eur. J. 2013, 19, 7243-7249.
- [8] J.-A. A. Ho, H.-C. Chang and W.-T. Su, Anal. Chem. 2012, 84, 3246-3253.
- [9] J. C. Jin, L. Y. Pang, G. P. Yang, L. Hou and Y. Y. Wang, *Dalton Trans.*, 2015, 44, 17222–17228.
- [10] Z. C. Yu, F. Q. Wang, X. Y. Lin, C. M. Wang, Y. Y. Fu, X. J. Wang, Y. N. Zhao and G. D. Li, *J. Solid. State. Chem.*, 2015, *232*, 96-101.
- [11] X. H. Zhou, L. Li, H. H. Li, T. Yang and W. Huang, *Dalton Trans.*, 2013, **42**, 12403–12409.
- [12] X. Y. Dong, R. Wang, J. Z. Wang, S. Q. Zang and T. C. W. Mak, J. Mater.

Chem. A, 2015, 3, 641–647.

Selective adsorption behavior for dyes

Typically, 30 mg of adsorbent sample was immersed in 20 mL of aqueous dye solution containing 5×10^{-5} mol L⁻¹ of dye at room temperature; the adsorption system was continually stirred.

Parameter meaning

 Q_{eq} (mg g⁻¹) is the amount of adsorbed MB by **1**, C_0 (mg L⁻¹) is the initial concentration of MB in the water, and C_{eq} (mg L⁻¹) is the final concentration of MB remaining in the water. V (L) is the volume of MB solution and m (g) is the weight of **1** in this adsorption experiment.

where q_e and q_t (mg g⁻¹) are the amounts of dye adsorbed at equilibrium and t (time), respectively, and K_1 (min⁻¹) is the rate constant.

where K_2 (g mg⁻¹ min⁻¹) is the pseudo-second-order rate constant.

where K_3 (g mg⁻¹ min⁻¹) is the second-order rate constant.

where K_4 (mg g⁻¹ min^{-1/2}) is the intraparticle diffusion rate constant and *C* is the boundary layer thickness.