Supplementary Material

Optimization of Mechanical and Dielectric Properties of Poly (urethane-urea)-based Dielectric Elastomers via Controlling Microstructure

Dong Xiang¹, Miao Liu¹, Guanliang Chen³, Teng Zhang⁴, Li Liu^{2*} and Yongri Liang^{1,*}

¹College of Materials Science and Engineering, Beijing Key Lab of Special Elastomer Composite Materials, Beijing Institute of Petrochemical Technology, Beijing 102617, P. R. China

²State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

³Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China ⁴School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, P.R.

China

*Corresponding Author

E-mail: <u>liangyr@bipt.edu.cn(</u>Yongri Liang), <u>liul@mail.buct.edu.cn</u> (Li Liu)

1. TGA measurement

The thermogravimetric analysis (TGA) conducted on a Pyris 1 thermoanalyzer system (Perkin Elmer Corp. USA) with 10° Cmin⁻¹ heating rate under N₂ atmosphere. The samples for TGA were weighted about 5 mg.

The decomposition of HS take place first at around 290 $^{\circ}$ C and the SS take place at around 380 $^{\circ}$ C. The HS fractions are determined by first region of decomposition as shown in Figure S1.

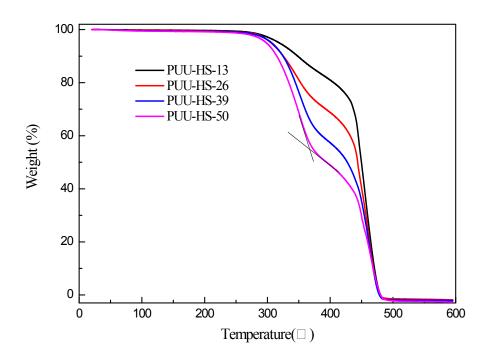


Figure S1: The TGA curves of PUUE with various HS content