Supplementary Information:

Crystallographic orientation control and optical properties of

GaN nanowires

Shaoteng Wu,^{abcd} Liancheng Wang,^{de} Xiaoyan Yi,^{*abcd} Zhiqiang Liu,^{*abcd} Jianchang Yan,^{abc} Guodong Yuan,^{abc} Tongbo Wei,^{abc} junxi Wang^{abc} and Jinmin Li^{abc}

^aCollege of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China

^bResearch and Development Center for Semiconductor Lighting, Chinese Academy of Sciences, No.35A Qinghua East Road, Beijing 100083, China

^cBeijing Engineering Research Center for the 3rd Generation Semiconductor Materials and Application, No.35A Qinghua East Road, Beijing 100083, China

^dInstitute of Semiconductors, Chinese Academy of Sciences, No.35A Qinghua East Road, Beijing 100083, China

^eState key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha Hunan, 410083, P. R. China.

*E-mail: spring@semi.ac.cn; lzq@semi.ac.cn

Figure S1. SEM images of the GaN NWs grown on different substrates: (a1,a2) r-plane sapphire under under GaCl flow rate of 9 sccm; (b1,b2), (c1,c2) and (d1,d2) silicon (111),GaN wafer (0001) and m-plane sapphire grown under GaCl flow rate of 16 sccm.

All of the results indicate triangular cross-section non-polar NWs growth under a low GaCl flow rate while the hexagonal cross-section polar NWs growth under high GaCl flow rate.

Figure S2. TEM images GaN NWs grown on c-plane sapphire, which is obtained with GaCl flow of 16 sccm with Ni/Au thickness of 4/4 nm. Low- and high-magnification TEM is shown in (a), (c) and (b), (d). The corresponding SAED is shown in inset (a) and (c). These results shown some nanowires are along m-axis while most of the NWs are c-axis.