Supporting Information

Design, Synthesis, and Insecticidal Activity of Novel 1-

alkoxy-2-nitroguanidines

Dongyan Yang,^a Chuan Wan, ^a Yumei Xiao,^a Chuanliang Che, ^a Changhui Rui,^b and Zhaohai Qin ^a.*

a. College of Science, China Agricultural University, Beijing 100193, China;

b. Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China

Table of Contents

¹H NMR,¹³C NMR and HRMS spectrum of title compounds

Data for (**4-01**): yield 72 %; white solid; mp 83-84 $^{\circ}$ C; ¹H NMR (300 MHz, CDCl₃) δ 9.11 (s, 1H), 8.35 (d, *J* = 2.1 Hz, 1H), 7.71 (dd, *J* = 8.2, 2.5 Hz, 1H), 7.46 – 7.27 (m, 1H), 7.09 (s, 1H), 5.93 (ddt, *J* = 16.6, 10.0, 6.6 Hz, 1H), 5.53 – 5.21 (m, 2H), 4.84 (s, 2H), 4.39 (d, *J* = 6.6 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 161.12, 151.02, 149.59, 139.25, 129.68, 129.15, 124.04, 122.56, 75.86, 49.78. HRMS (ESI) *m/z* calcd for C₁₀H₁₃ClN₅O₃ (M+H)⁺ 286.0701, found 286.0704.

Data for (**4-02**): yield 78 %; white solid; mp 71-72 $^{\circ}$ C;¹H NMR (300 MHz, CDCl₃) δ 9.12 (s, 1H), 8.36 (d, *J* = 2.3 Hz, 1H), 7.72 (dd, *J* = 8.2, 2.5 Hz, 1H), 7.32 (d, *J* = 7.8 Hz, 1H), 7.01 (s, 1H), 4.84 (s, 2H), 3.99 (q, *J* = 7.1 Hz, 2H), 1.29 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.98, 151.05, 149.56, 139.19, 129.18, 124.05, 70.59, 49.40, 12.97. HRMS(ESI) *m/z* calcd for C₉H₁₃ClN₅O₃ (M+H)⁺ 274.0701, found 274.0704.

Data for (**4-03**): yield 59 %; white solid; mp 101-102 $^{\circ}$ C; ¹H NMR (300 MHz, CDCl₃) δ 9.50 – 8.79 (m, 1H), 8.40 (d, *J* = 2.4 Hz, 1H), 7.76 (dd, *J* = 8.2, 2.5 Hz, 1H), 7.35 (d, *J* = 8.2 Hz, 1H), 7.00 – 6.23 (m, 1H), 4.87 (s, 2H), 3.90 (t, *J* = 6.7 Hz, 2H), 1.73 (dd, *J* = 14.3, 7.0 Hz, 2H), 1.01 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.94, 151.26, 149.67, 139.19, 129.02, 124.08, 76.54, 49.41, 20.92, 10.04. HRMS (ESI) *m/z* calcd for C₁₀H₁₅ClN₅O₃ (M+H)⁺ 288.0858 , found 288.0858 .

Data for (**4-04**): yield 60 %; white solid; mp 68-69 $^{\circ}$ C; ¹H NMR (300 MHz, CDCl₃) δ 9.38 – 8.80 (m, 1H), 8.37 (s, 1H), 7.73 (d, *J* = 8.2 Hz, 1H), 7.32 (d, *J* = 8.2 Hz, 1H), 6.87 – 6.24 (m, 1H), 4.84 (s, 2H), 3.91 (t, *J* = 6.6 Hz, 2H), 1.63 (d, *J* = 8.0 Hz, 2H), 1.39 (d, *J* = 7.6 Hz, 2H), 0.94 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 161.09, 151.45, 149.84, 139.34, 129.14, 124.24, 75.03, 49.56, 29.70, 19.01. HRMS (ESI) *m/z* calcd for C₁₁H₁₇ClN₅O₃ (M+H)⁺ 302.1014 , found 302.1018 .

Data for (**4-05**): yield 57 %; white solid; mp 67-68 $^{\circ}$ C;¹H NMR (300 MHz, CDCl₃) δ 9.01 (s, 1H), 8.25 (d, *J* = 2.4 Hz, 1H), 7.62 (dd, *J* = 8.2, 2.4 Hz, 1H), 7.23 (t, *J* = 17.1 Hz, 2H), 4.74 (s, 2H), 3.82 (t, *J* = 6.8 Hz, 2H), 1.67 − 1.38 (m, 2H), 1.17 (dd, *J* = 8.8, 5.3 Hz, 4H), 0.73 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.60, 150.69, 149.37, 139.11, 129.41, 123.92, 74.93, 49.02, 27.39, 26.93, 21.85, 13.37. HRMS (ESI) *m/z* calcd for C₁₂H₁₉ClN₅O₃ (M+H)⁺ 316.1171 , found 316.1173 .

Data for (**4-06**): yield 64 %; yellow solid; mp 78-79[°]C;¹H NMR (300 MHz,CDCl₃) δ 9.09 (s, 1H), 7.50 (s, 1H), 7.11 (s, 1H), 5.98 (ddt, *J* = 16.9, 10.2, 6.6 Hz, 1H), 5.61 − 5.27 (m, 2H), 4.90 (s, 2H), 4.45 (d, *J* = 6.6 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 161.15, 152.84, 141.34, 132.16, 129.78, 122.70, 76.00, 45.81. HRMS (ESI) *m/z* calcd for C₈H₁₁ClN₅O₃S (M+H)⁺ 292.0266 , found 292.0271 .

Data for (**4-07**): yield 53 %; white solid; mp 67-68 $^{\circ}$ C; ¹H NMR (300 MHz, CDCl₃) δ 9.10 (s, 1H), 7.51 (s, 1H), 7.01 (s, 1H), 4.91 (s, 2H), 4.06 (q, *J* = 7.1 Hz, 2H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 161.08, 152.86, 141.29, 132.20, 70.74, 45.44, 13.06. HRMS (ESI) *m/z* calcd for C₇H₁₁ClN₅O₃S (M+H)⁺ 280.0266 , found 280.0265 .

Data for (**4-08**): yield 61 %; white solid; mp 47-48 $^{\circ}$ C;¹H NMR (300 MHz, CDCl₃) δ 9.11 (s, 1H), 7.51 (s, 1H), 6.85 (s, 1H), 4.91 (s, 2H), 3.96 (t, *J* = 6.7 Hz, 2H), 1.89 – 1.57 (m, 2H), 1.02 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.98, 152.89, 141.33, 132.14, 76.69, 45.32, 20.92, 10.04. HRMS (ESI) *m/z* calcd for C₈H₁₃ClN₅O₃S (M+H)⁺ 294.0422 , found 294.0424 .

Data for (**4-09**): yield 62 %; yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 9.36 – 8.60 (m, 1H), 7.42 (s, 1H), 7.19 – 6.78 (m, 1H), 4.82 (s, 2H), 3.91 (t, J = 6.7 Hz, 2H), 1.69 – 1.47 (m, 2H), 1.33 (dd, J = 15.1, 7.4 Hz, 2H), 0.86 (t, J = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.88, 152.78, 141.25, 132.26, 74.98, 45.24, 29.45, 18.77, 13.39. HRMS (ESI) m/z calcd for C₉H₁₅ClN₅O₃S (M+H)⁺ 308.0579 , found 308.0581.

Data for (**4-10**): yield 43 %; yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 9.02 (s, 1H), 7.43 (s, 1H), 7.11 (s, 1H), 4.83 (s, 2H), 3.91 (t, *J* = 6.8 Hz, 2H), 1.61 (dd, *J* = 13.9, 6.9 Hz, 2H), 1.40 – 1.16 (m, 4H), 0.82 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.75, 152.63, 141.16, 132.41, 75.17, 45.13, 27.48, 27.04, 21.93, 13.45. HRMS (ESI) *m/z* calcd for $C_{10}H_{17}CIN_5O_3S$ (M+H)⁺ 322.0735, found 322.0740.

Data for (**4-11**): yield 64 %; white solid; mp 80-81 $^{\circ}$ C; ¹H NMR (300 MHz, CDCl₃) δ 9.09 (s, 1H), 7.50 (s, 1H), 7.11 (s, 1H), 5.98 (ddt, *J* = 16.9, 10.2, 6.6 Hz, 1H), 5.61 – 5.27 (m, 2H), 4.90 (s, 2H), 4.45 (d, *J* = 6.6 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 161.09, 133.82, 132.92, 129.92, 129.86, 128.46, 122.26, 75.79, 52.29. HRMS (ESI) *m/z* calcd for C₁₁H₁₃ClN₄NaO₃ (M+Na)⁺ 307.0568, found 307.0571.

Data for (**4-12**): yield 63 %; white solid; mp 73-74 $^{\circ}$ C;¹H NMR (300 MHz, CDCl₃) δ 9.14 (s, 1H), 7.39 – 7.20 (m, 4H), 6.87 (s, 1H), 4.82 (s, 2H), 3.93 (q, *J* = 7.1 Hz, 2H), 1.27 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.94, 133.82, 132.98, 129.85, 128.47, 70.47, 51.94, 12.96. HRMS (ESI) *m/z* calcd for C₁₀H₁₃ClN₄NaO₃ (M+Na)⁺ 295.0568, found 295.0572.

Data for (**4-13**): yield 45 %; white solid; mp 106-107 °C; ¹H NMR (300 MHz, CDCl₃) δ 9.48 − 8.69 (brs, 1H), 7.41 − 7.23 (m, 4H), 6.92 − 6.38 (brs, 1H), 4.84 (s, 2H), 3.84 (t, *J* = 6.7 Hz, 2H), 1.76 − 1.59 (m, 2H), 0.98 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.87, 133.90, 132.92, 129.91, 128.49, 76.31, 51.90, 20.89, 10.04. HRMS (ESI) *m/z* calcd for C₁₁H₁₅ClN₄NaO₃ (M+Na)⁺ 309.0725 , found 309.0729.

×10 5	ESIScan (2.414 min) Frag=150.0V 13.d Subtract	
3-	30	9.0729
2.8-	MJ	++X9)+
2.6-		
2.4-	207.0007	
2.2-	287.0907	
2-		
1.8-		
1.6-		
1.4-		
1.2-		
1-		
0.8-		
0.6-		
0.4-		229 1149
0.2-		323.1143
0	<u> </u>	ullus individual and an and the second and a second second and a second second second second second second second
	220 230 240 250 260 270 280 290 300	310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510

Data for (**4-14**): yield 65 %; white solid; mp 92-93 °C; ¹H NMR (300 MHz, CDCl₃) δ 9.15 (s, 1H), 7.33 – 7.27 (m, 4H), 6.68 (s, 1H), 4.82 (s, 2H), 3.87 (d, J = 6.7 Hz, 2H), 1.62 (dt, J = 14.7, 6.8 Hz, 2H), 1.38 (dt, J = 14.9, 7.4 Hz, 2H), 1.02 – 0.85 (m, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.78, 133.82, 132.99, 129.86, 128.45, 74.66, 51.81, 29.47, 18.77, 13.38. HRMS (ESI) m/z calcd for C₁₂H₁₈ClN₄O₃ (M+H)⁺ 301.1062, found 301.1064.

Data for (**4-15**): yield 58 %; white solid; mp 78-79[°]C; ¹H NMR (300 MHz, CDCl₃) δ 9.14 (s, 1H), 7.41 – 7.22 (m, 4H), 6.74 (s, 1H), 4.82 (s, 2H), 3.85 (t, J = 6.7 Hz, 2H), 1.62 (dd, J = 14.0, 6.9 Hz, 2H), 1.31 (dd, J = 9.2, 5.3 Hz, 4H), 0.90 (t, J = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.81, 133.83, 132.98, 129.87, 128.45, 74.94, 51.85, 27.60, 27.15, 21.96, 13.47. HRMS (ESI) m/z calcd for C₁₃H₂₀ClN₄O₃ (M+H)⁺ 315.1218, found 315.1220.

Data for (**4-16**): yield 56 %; white solid; mp 76-77 °C; ¹H NMR (300 MHz, CDCl₃) δ 9.12 (s, 1H), 8.13 (t, *J* = 5.5 Hz, 2H), 7.50 (d, *J* = 8.7 Hz, 2H), 7.09 (s, 1H), 6.04 − 5.80 (m, 1H), 5.38 (dd, *J* = 12.3, 5.7 Hz, 2H), 4.97 (s, 2H), 4.39 (d, *J* = 6.6 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 160.99, 147.30, 141.98, 129.74, 129.03, 123.43, 122.52, 75.90, 52.10. HRMS (ESI) *m*/*z* calcd for $C_{11}H_{13}N_5NaO_5$ (M+Na)⁺ 318.0809 , found 318.0813.

Data for (**4-17**): yield 64 %; white solid; mp 76-77 °C; ¹H NMR (300 MHz, CDCl₃) δ 9.16 (s, 1H), 8.20 (d, *J* = 8.7 Hz, 2H), 7.54 (d, *J* = 8.6 Hz, 2H), 6.86 (s, 1H), 4.98 (s, 2H), 4.00 (q, *J* = 7.1 Hz, 2H), 1.32 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.92, 147.42, 141.88, 129.05, 123.50, 70.67, 51.89, 12.99. HRMS (ESI) *m/z* calcd for C₁₀H₁₃N₅NaO₅ (M+H)⁺ 306.0809, found 306.0812.

Data for (**4-18**): yield 48 %; yellow solid; mp 74-75 °C; ¹H NMR (300 MHz, CDCl₃) δ 9.17 (s, 1H), 8.34 − 8.12 (m, 2H), 7.54 (d, *J* = 8.8 Hz, 2H), 6.77 (s, 1H), 4.99 (s, 2H), 3.90 (t, *J* = 6.7 Hz, 2H), 1.80 − 1.62 (m, 2H), 0.98 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.79, 147.44, 141.85, 129.06, 123.50, 76.55, 51.77, 20.87, 9.99. HRMS (ESI) *m/z* calcd for C₁₁H₁₅N₅NaO₅ (M+Na)⁺ 320.0965 , found 320.0971.

Data for (4-19): yield 69 %; white solid; mp 93-94 $^{\circ}$ C; ¹H NMR (300 MHz, CDCl₃) δ 9.16 (s, 1H), 8.19 (d, J = 8.7 Hz, 2H), 7.53 (d, J = 8.7 Hz, 2H), 6.79 (s, 1H), 4.98 (s, 2H), 3.93 (t, J = 6.7 Hz, 2H), 1.79 – 1.53 (m, 2H), 1.38 (dq, J = 14.5, 7.3 Hz, 2H), 0.92 (t, J = 7.3 Hz, 3H). 13 C NMR (75 MHz, CDCl₃) δ 160.74, 147.40, 141.92, 129.02, 123.48, 74.88, 51.71, 29.45, 18.76, 13.35. HRMS (ESI) *m/z* calcd for C₁₂H₁₈N₅O₅ (M+H)⁺ 312.1302, found 312.1306.

Data for (**4-20**): yield 57 %; white solid; mp 88-89 °C; ¹H NMR (300 MHz, CDCl₃) δ 9.15 (s, 1H), 8.19 (d, J = 8.7 Hz, 2H), 7.53 (d, J = 8.7 Hz, 2H), 6.80 (s, 1H), 4.98 (s, 2H), 3.92 (t, J = 6.7 Hz, 2H), 1.83 – 1.49 (m, 2H), 1.49 – 1.12 (m, 4H), 0.89 (t, J = 7.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.74, 147.39, 141.93, 129.02, 123.48, 75.15, 51.72, 27.57, 27.13, 21.95, 13.45. HRMS (ESI) m/z calcd for C₁₃H₂₀N₅O₅ (M+H)⁺ 326.1459 , found 326.1463 .

Data for (**4-21**): yield 52 %; white solid; mp 91-92[°]C;¹H NMR (300 MHz, CDCl₃) δ 9.10 (s, 1H), 7.60 (d, J = 8.2 Hz, 2H), 7.44 (d, J = 8.3 Hz, 2H), 7.07 (s, 1H), 5.93 (ddt, J = 16.7, 10.1, 6.6 Hz, 1H), 5.56 – 5.18 (m, 2H), 4.91 (s, 2H), 4.36 (d, J = 6.6 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 160.98, 139.97, 132.07, 129.76, 128.90, 122.49, 118.17, 111.55, 75.85, 52.36. HRMS (ESI) m/z calcd for C₁₂H₁₃N₅NaO₃ (M+H)⁺ 298.0911, found 298.0915.

Data for (**4-22**): yield 45 %; white solid; mp 111-113[°]C; ¹H NMR (300 MHz, CDCl₃) δ 9.57 − 8.76 (m, 1H), 7.66 (d, *J* = 8.1 Hz, 2H), 7.48 (d, *J* = 8.1 Hz, 2H), 7.15 − 6.36 (m, 1H), 4.94 (s, 2H), 3.98 (q, *J* = 7.0 Hz, 2H), 1.31 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.95, 139.85, 132.12, 128.92, 118.09, 111.83, 70.62, 52.19, 13.01. HRMS (ESI) *m/z* calcd for C₁₁H₁₃N₅NaO₃ (M+Na)⁺ 286.0911 , found 286.0915 .

Data for (**4-23**): yield 59 %; white solid; mp 64-65 °C; ¹H NMR (300 MHz, CDCl₃) δ 9.16 (s, 1H), 7.65 (d, *J* = 8.2 Hz, 2H), 7.48 (d, *J* = 8.3 Hz, 2H), 7.14 − 6.32 (m, 1H), 4.94 (s, 2H), 3.87 (t, *J* = 6.7 Hz, 2H), 1.78 − 1.60 (m, 2H), 0.97 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.79, 139.87, 132.10, 128.92, 118.10, 111.80, 76.49, 52.03, 20.86, 9.99. HRMS (ESI) *m/z* calcd for $C_{12}H_{16}N_5O_3$ (M+H)⁺ 278.1248 , found 278.1250.

Data for (**4-24**): yield 52 %; white crystal; mp 88-89 °C; ¹H NMR (300 MHz, CDCl₃) δ 9.14 (s, 1H), 7.75 − 7.58 (m, 2H), 7.46 (d, J = 8.4 Hz, 2H), 6.79 (s, 1H), 4.92 (s, 2H), 3.90 (t, J = 6.7 Hz, 2H), 1.64 (dt, J = 14.7, 6.9 Hz, 2H), 1.38 (dt, J = 14.9, 7.3 Hz, 2H), 0.94 (dt, J = 14.7, 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.73, 139.95, 132.09, 128.87, 118.12, 111.70, 74.81, 51.97, 29.44, 18.75, 13.35. HRMS (ESI) m/z calcd for C₁₃H₁₈N₅O₃ (M+H)⁺ 292.1404, found 292.1406.

Data for (**4-25**): yield 62 %; white solid; mp 70-71[°]C; ¹H NMR (300 MHz, CDCl₃) δ 9.62 – 8.61 (m, 1H), 7.79 – 7.59 (m, 2H), 7.48 (d, *J* = 8.2 Hz, 2H), 7.08 – 6.41 (m, 1H), 4.94 (s, 2H), 3.90 (t, *J* = 6.7 Hz, 2H), 1.73 – 1.58 (m, 2H), 1.32 (dd, *J* = 9.2, 5.3 Hz, 4H), 0.91 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 160.78, 139.87, 132.11, 128.92, 118.09, 111.82, 75.11, 52.05, 27.59, 27.16, 21.95, 13.47. HRMS (ESI) *m/z* calcd for $C_{14}H_{20}N_5O_3$ (M+H)⁺ 306.1561, found 306.1565.

×10 6	+ESI Scan (1.729 min) Frag=150.0V 30.d Subtract
2.4-	306.1565
2.2-	IM+H)≠
2-	
1.8-	
1.6-	
1.4-	
1.2-	328.1385
1-	
0.8-	
0.6-	
0.4-	
0.2-	
-0	215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 285 30 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415

Single crystal X-Ray data for compound 4-02

Crystal Data. C₉H₁₂ClN₅O₃, M =273.69, monoclinic, a = 11.7756(4) Å, b = 9.1501(3) Å, c = 11.4455(4) Å, $\beta = 103.010(3)^\circ$, U = 1201.57(7) Å³, T = 105.2, space group P2₁/c (no. 14), Z = 4, μ (Mo K α) = 0.328, 4458 reflections measured, 2357 unique ($R_{int} = 0.0201$) which were used in all calculations. The final $wR(F_2)$ was 0.1039 (all data).

Table 1: Crystal data and structure refinement for exp_4503

Identification code	exp_4503
Empirical formula	$\mathrm{C_9H_{12}ClN_5O_3}$
Formula weight	273.69
Temperature / K	105.2
Crystal system	monoclinic
Space group	P2 ₁ /c
a / Å, b / Å, c / Å	11.7756(4), 9.1501(3),
$\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ}$	90.00, 103.010(3), 90.00
Volume / ų	1201.57(7)
Z	4
$ ho_{calc}$ / mg mm ⁻³	1.513
μ / mm ⁻¹	0.328
F(000)	568
Crystal size / mm ³	$0.34 \times 0.30 \times 0.25$
2Θ range for data collection	6.32 to 51.98°
Index ranges	$-14 \le h \le 14, -11 \le k \le 6, -7$
Reflections collected	4458
Independent reflections	2357[R(int) = 0.0201 (inf-
Data/restraints/parameters	2357/0/164
Goodness-of-fit on F ²	1.067
Final R indexes [I> 2σ (I) i.e. $F_0>4\sigma$ (F_0)]	$R_1 = 0.0411, wR_2 = 0.0984$
Final R indexes [all data]	$R_1 = 0.0497, wR_2 = 0.1039$
Largest diff. peak/hole / e Å ⁻³	0.404/-0.493
Flack Parameters	Ν
Completeness 40	0.999

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for exp_4503. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

	Atom	x	y	Z	U(eq)
Cl1		6876.9(5)	137.9(6)	4516.8(6)	33.69(18)
01		2439.5(12)	4521.3(15)	5582.2(12)	20.4(3)
03		174.1(13)	515.0(17)	2008.7(13)	28.1(4)
N5		347.5(15)	1016.8(18)	3041.9(15)	21.3(4)
02		-200.5(14)	542.3(18)	3780.8(14)	32.1(4)
N2		2028.3(14)	3953.3(18)	4422.9(14)	18.5(4)
C6		2806.8(16)	4207(2)	3610.0(17)	19.0(4)
N4		1151.7(14)	2092.8(17)	3279.6(14)	18.5(4)
C4		3839.7(16)	3181(2)	3835.2(17)	17.6(4)
N1		5591.0(16)	2252(2)	5144.8(16)	28.0(4)
C1		5669.9(17)	1311(2)	4253.6(19)	22.1(4)
N3		929.6(14)	2407.3(19)	5315.2(15)	21.1(4)
C7		1332.5(16)	2756(2)	4362.9(17)	17.5(4)
C5		4662.0(17)	3182(2)	4921.7(18)	20.5(4)
C3		3989.3(18)	2162(2)	2982.9(18)	25.0(5)
C2		4911.5(17)	1225(2)	3180.0(18)	21.0(4)
C8		1925.2(18)	5957(2)	5667.3(19)	23.9(5)
C9		2428(2)	6496(2)	6922.0(19)	30.0(5)

Table 3 Anisotropic Displacement Parameters	(Å ² ×10 ³) for exp_4503.	The Anisotropic displacement
factor exponent takes the form: -2π ² [h ² a* ² U ₁	$_1++2hka\times b\times U_{12}$]	

Atom	U11	U22	U ₃₃	U23	U ₁₃	U ₁₂
Clı	26.7(3)	25.9(3)	49.5(4)	8.0(3)	10.7(3)	7.2(2)
01	20.8(7)	22.3(7)	15.4(7)	-2.4(6)	-1.5(6)	2.3(6)
03	34.3(9)	33.6(9)	16.2(7)	-6.2(7)	5.0(6)	-11.7(7)
N5	21.0(9)	22.2(9)	20.0(9)	2.5(8)	3.4(7)	-1.2(7)
02	38.3(9)	38.0(9)	23.1(8)	-0.7(7)	13.6(7)	-17.3(7)
N2	19.7(8)	21.7(9)	12.7(8)	-1.8(7)	0.6(7)	-1.4(7)
C6	19.2(10)	21.5(10)	15.7(9)	1.9(8)	2.5(8)	-2.9(8)
N4	18.5(8)	19.2(8)	17.2(8)	-0.4(7)	2.9(7)	-2.5(7)
C4	17.9(9)	16.6(9)	18.7(10)	1.5(8)	4.8(8)	-5.2(7)
N1	27.7(10)	31.3(10)	24.7(10)	1.4(8)	5.6(8)	-0.1(8)
C1	21.8(10)	18.1(10)	27.8(11)	2.4(9)	8.3(9)	0.1(8)
N3	23.7(9)	22.9(9)	17.8(9)	-1.5(7)	6.9(7)	-2.6(7)
C7	14.8(9)	19.6(10)	17.2(10)	3.6(8)	1.7(8)	4.6(7)
C5	21.1(10)	20.2(10)	19.4(10)	-3.0(8)	2.8(8)	-1.3(8)
C3	26.6(11)	29.6(12)	16.2(10)	-4.1(9)	-0.5(9)	-1.7(9)
C2	21.3(10)	21.3(10)	19.2(10)	-9.2(9)	2.0(8)	1.2(8)
C8	25.3(11)	20.6(10)	25.2(11)	-0.5(9)	4.8(9)	3.0(8)
C9	37.3(13)	28.0(11)	24.2(12)	-5.2(10)	5.8(10)	-3.1(10)

Table 4 Bond Lengths for exp_4503.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Clı	C1	1.752(2)	N4	C7	1.354(2)
01	N2	1.406(2)	C4	C5	1.393(3)
01	C8	1.459(2)	C4	C3	1.389(3)
03	N5	1.242(2)	Nı	C1	1.354(3)
N5	02	1.251(2)	N1	C5	1.364(3)
N5	N4	1.351(2)	C1	C2	1.349(3)
N2	C6	1.464(2)	N3	C7	1.322(2)
N2	C7	1.360(2)	C3	C2	1.362(3)
C6	C4	1.512(3)	C8	C9	1.508(3)

Table 5	Bond.	Angles	for	exp	4503.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N2	O1	C8	109.63(14)	C1	N1	C5	116.35(18)
03	N5	02	121.07(16)	N1	C1	Cl1	116.78(16)
03	N5	N4	114.76(16)	C2	C1	Cl1	117.75(16)
02	N5	N4	124.17(17)	C2	C1	N1	125.46(19)
O1	N2	C6	114.15(14)	N4	C7	N2	112.09(16)
C7	N2	O1	114.89(15)	N3	C7	N2	118.48(18)
C7	N2	C6	123.50(16)	N3	C7	N4	129.43(18)
N2	C6	C4	112.83(16)	N1	C5	C4	122.24(18)
N5	N4	C7	118.03(16)	C2	C3	C4	121.93(19)
C5	C4	C6	121.50(17)	C1	C2	C3	116.97(19)
C3	C4	C6	121.43(17)	O1	C8	C9	106.16(16)
C3	C4	C5	117.03(18)				

Table 6 T	orsion Angles	for exp_4503.			
	Α	в	С	D	Angle/°
Clı	C1	C2	C3		-178.90(16)
O1	N2	C6	C4		77.4(2)
O1	N2	C7	N4		-167.91(14)
O1	N2	C7	N3		12.6(2)
03	N5	N4	C7		175.85(16)
N5	N4	C7	N2		-170.83(15)
N5	N4	C7	N3		8.6(3)
02	N5	N4	C7		-3.8(3)
N2	O1	C8	C9		-178.86(15)
N2	C6	C4	C5		-62.7(2)
N2	C6	C4	C3		115.1(2)
C6	N2	C7	N4		-19.9(2)
C6	N2	C7	N3		160.55(17)
C6	C4	C5	Nı		179.17(18)
C6	C4	C3	C2		-179.46(19)
C4	C3	C2	C1		1.1(3)
N1	C1	C2	C3		-0.2(3)
C1	N1	C5	C4		-0.5(3)
C7	N2	C6	C4		-70.8(2)
C5	C4	C3	C2		-1.6(3)
C5	N1	C1	Clı		178.63(15)
C5	N1	C1	C2		-0.1(3)
C3	C4	C5	N1		1.3(3)
C8	O1	N2	C6		96.07(18)
C8	O1	N2	C7		-112.90(17)

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Ų×10³) for exp_4503.

	Atom	x	y	Z	U(eq)
H6A		3087	5207	3703	23
H6B		2370	4088	2790	23
H3A		483	1659	5294	25
H3B		1114	2928	5955	25
H5		4575	3840	5515	25
H3		3444	2118	2257	30
H2		5014	555	2601	25
H8A		1083	5883	5525	29
H8B		2121	6620	5081	29
H9A		2112	7442	7027	45
H9B		3260	6566	7048	45
Н9С		2233	5825	7491	45