Supplementary Information

Highly selective fluorescent carbon dots probe of mercury(II) based on thymine-mercury(II)-thymine structure

Yong Li, Zhan-Yao Zhang, Hao-Fan Yang, Guang Shao, Feng Gan*

School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China

*Corresponding authors: E-mail addresses: cesgf@mail.sysu.edu.cn. Tel.: +86 20 84110918; Fax: +86 20 84110918.

List of Figures

. 3
;
;
. 4
)
l
. 6

List of Tables

S 1	Fluorescence lifetimes of CDs-PEI and CDs-Thy						7

Figure S1. Plot of the absorbance intensity at 270 nm as a function of thymine-1acetic acid concentration in the presence of 100 μ g/mL the CDs-Thy (0.1 M PBS buffer, pH 7.4).

Figure S2. (A) Fluorescence response of probe (0.1 mg/mL) in the absence (top line) and presence (bottom line) of Hg²⁺ (33.3 μ M), respectively. (B) Reaction-time profiles of probe (0.1 mg/mL) in the presence of Hg²⁺ (1, 4, 30, and 50 μ M). The fluorescence intensities at 441 nm were monitored in aqueous solution (0.2 M PBS buffer, pH 7.4) ($\lambda_{ex} = 354$ nm, slit: 5/5 nm).

Fig. S2A shows the fluorescent intensities of the CDs-Thy under different pH from pH 5.8 to 8.2 in the absence and presence of Hg^{2+} , respectively. Without Hg^{2+} , the fluorescence intensity of the CDs-Thy have a slightly decrease with the increasing of pH. But the fluorescence intensities still stayed at a strong emission level. Upon addition of Hg^{2+} , the fluorescence spectra of CDs-Thy had a relatively weak emission and remained unaffected during this pH range. Therefore, the CDs-Thy can successfully detect Hg^{2+} in the pH range from 5.8 to 8.2 and a PBS buffer (pH = 7.4) was chosen for all subsequent detection assays.

Fig. S2B shows the quenching kinetics of the CDs-Thy with different Hg²⁺ concentration at different time by recording the fluorescence spectra. The dramatic fluorescence quenching was observed within less than 30 seconds when 30 μ M and 30 μ M Hg²⁺ was introduced into the sensing system containing 0.1 mg/mL

of the CDs-Thy, indicating that quenching kinetics was fairly fast. Moreover, the fluorescence emission was quenched to a stable state in 10 minutes even in the case of lower concentrations of Hg^{2+} . Thus, this sensing system could be used for the real-time monitoring of Hg^{2+} in practical analysis.

Figure S3. Linear plots of the fluoresence intensities of CDs-Thy (33.3 μ g/mL) upon addition of Hg²⁺ (0, 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0 μ M) in PBS buffer solution (0.1 M, pH 7.4).

Sample	τ_1 (ns)	A_1	Percent (%)	$ au_2$ (ns)	A_2	Percent (%)	$\tau_{\rm avg}~({\rm ns})$
CDs-PEI	2.24	0.017	11.99	12.16	0.023	88.01	10.97
CDs-Thy	3.81	0.017	19.27	11.69	0.023	80.73	10.17

Table S1. Fluorescence lifetimes of CDs-PEI and CDs-Thy

 τ_1 and τ_2 refer to the short and long lifetime, respectively.