RSC Advances

Supporting Information

1 Preparation of CCNT/Nafion membrane

Materials: The perfluorosulfonic acid (PFSA) resin Nafion solution (DE-520, 5.0-5.4 wt% in a mixture of propanol and water) was purchased from DuPont Company. Carboxylated carbon nanotubes (CCNT, purity > 98%) were purchased from the Chinese Academy of Sciences Chengdu Organic Chemical Co. Ltd. Pd(NH₃)₄Cl₂ (purity > 99%), NaBH₄ (purity \ge 98%), and N₂H₄·H₂O (purity > 98%) were purchased from Aldrich. All of the materials were analytically pure and used without further purification.

A certain amount of CCNT was added to 3 mL ethylene glycol (EG) and sonicated for 30 min, then the suspensions was mixed with the Nafion solution and stirred for 4 hrs in a poly(dimethylsiloxane) (PDMS, Sylgad184) container (40 mm × 60 mm × 40 mm). The mixture was evaporated at 90 °C and 100 °C for 12 hrs successively to cast CCNT /Nafion hybrid membrane. After that, the membrane was annealed at 120 °C for 1 hr. The hybrid membranes were obtained with CCNT weight fraction of 1, 2, 5 and 10 wt%, respectively. The pure Nafion membrane with 0 wt% CCNT content was prepared for comparison using the same method. The sizes of membranes were 60 mm × 40 mm × (180±10) μ m (length × width × thickness) under dry state. The composition of the casting solutions are summarized in table 1.

CCNT content	Solution composition					
	CNT (mg)	Nafion(aq) (g)	EG (mL)			
0 wt%	0	18.00	3.0			
1 wt%	9.0	17.82	3.0			
2 wt%	18.0	17.64	3.0			
5 wt%	45.0	17.10	3.0			
10 wt%	90.0	16.20	3.0			

Table 1. Composition of the casting solutions.

2 Preparation of Pd-electrode IPMCs

The major steps of the preparation process for the IPMC are as follows: 1) Surface roughening treatment. The membranes were roughened with a sandblasting machine, then washed with 20% ethanol solution in an ultrasonic cleaning machine and boiled in 1 M HCl and water for 30 min, successively. 2) Ion adsorption. This step was to soak the membranes in $Pd(NH_3)_4Cl_2$ solution to adsorb $[Pd(NH_3)_4]^{2+}$ via an ion-exchange process. 3) Reduction. In this step, the adsorbed $[Pd(NH_3)_4]^{2+}$ was reduced to metallic state by strong reducing agent NaBH₄ to form infiltrate electrode. 4) Further plating. In order to increase the thickness of the surface electrode and reduce the surface resistivity effectively, $Pd(NH_3)_4Cl_2$ and H_2NNH_2 were put into the same solution simultaneously to grow Pd nano-particles above the infiltrate Pd electrode layer. 5) Ion exchange. In this step, the IPMCs were cut into specimens with a certain size (35-mm long, 5-mm wide, (190±10)- μ m thick) and soaked in 2 mol/L sodium hydrate solution at room temperature for 6 hrs to exchange H⁺ for Na⁺ as actuating cations.

FIG. 1. The major steps of the preparation process for the IPMC.

3 SEM micrographs

SEM micrographs of all the prepared Nafion membranes are observed using a field emission (FE)-scanning electron micrography (FE-SEM, Zeiss Genimi SEM 500) and shown in Fig. 2, from which the CCNT can be seen uniformly dispersed in Nafion matrix.

FIG. 2. SEM micrographs of the prepared Nafion membranes.

4 The measured displacement of three parallel samples of each kind IPMC

FIG. 3. The measured displacement of three parallel samples of each kind IPMC.

RSC Advances

5 Fitting effects of the deformations caused by CCNT

FIG. 4. Fitting effects of the deformations caused by CCNT of various CCNT doped IPMCs.

CC cont	NT tent	1 wt%		2 wt%		5 wt%		10 wt%	
		Value	Standard error	Value	Standard error	Value	Standard error	Value	Standard error
Þ	4	1.2730	0.0028	3.4700	0	3.5600	0	3.600	0
1		10.9393	0.04188	4.1701	0.00443	3.57	0.00466	2.9719	0.01698
k	5	0.0056	6.14E-5	0.01383	2.11E-5	0.08756	2.15E-5	0.24633	8.68E-5

Table 2. Fitting value and standard error of A, $\,\tau\,$ and $\,\kappa\,$ of various CCNT doped IPMCs.