Supplementary information for

Engineering the Metal-binding Loop of a Blue Copper Protein by Circular Permutation

Honghui Chen,^{a,b} Binbin Su, ^{a,b} Tongtong Zhang,^b Aiping Huang,^b Haiping Liu,^{b,*} Yang Yu,^{b,*} Jiangyun Wang^{c,*}

^a College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China

^b Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China

^c Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China

* Correspondence: liu_hp@tib.cas.cn , yu_y@tib.cas.cn, jwang@ibp.ac.cn

Figure S1. ESI Mass spec of Az-loop, the lower panel showed the deconvoluted spectrum. Az-loop, calculated: 14230, observed: 14226.

Figure S2. EPR spectrum Az-loop and simulation.

Figure S3. Absorption spectra of Cu(II) loaded Az-loop with equal volume, same concentration of WT Az (black) or buffer (red). Cu(II)-loaded Az-loop was incubated with apo WT Az for 0.5 h before the spectrum was taken.

Figure S4. Cyclic voltammogram of Az-loop at pH 4 (left) and pH 7 (right).

A)

Figure S5. Electronic absorption spectra of Az-loop (0.1 mM) upon addition of water, histidine (3 mM) and NaN₃ (3 mM).

Figure S6. Solvent accessibility to copper site in WT Az (A) and Az-loop (B).

		g _x	gy	gz	$A_x / 10^{-4} \text{ cm}^{-1}$	$A_y/10^{-4} \text{ cm}^{-1}$	$A_z/10^{-4} \text{ cm}^{-1}$	Ratio
WT Az		2.032	2.054	2.256	8.0	8.0	54.3	1
Az-loop	Species 1	2.032	2.054	2.256	8.0	8.0	54.3	0.84
	Species 2	2.036	2.043	2.182	8.0	8.0	200.0	0.16

 Table S1. EPR simulation parameters

The assignment of x vs. y is arbitrary.

Diffraction data				
Space group	P2			
Cell dimensions				
a, b, c (Å)	49.9, 88.0, 66.1			
α, β, γ (°)	90, 110.2, 90			
Resolution range (Å)	62.02-1.66 (1.69-1.66)			
Number of unique reflections	62796			
Data completeness (%)	99.5 (100)			
Redundancy	7.4 (7.4)			
< <i>I</i> >/<σ(<i>I</i>)>	48.4 (9.1)			
R _{merge} ^a	0.113 (0.530)			
Refinement				
<i>R</i> -factor / <i>R</i> _{free} ^b	0.162/0.217			
Number of reflections used	59724			
r.m.s.d. bond length (Å)	0.008			
r.m.s.d. bond angles (°)	1.356			
Mean <i>B</i> factor (Å ²)				
protein main-chain atoms	22.9			
protein side-chain atoms	26.9			
water molecules	33.8			
Cu	18.5			
No. atoms				
protein	4033			
water molecules	496			
Cu	4			
Ramachandran plot statistics				
In preferred regions (%)	97.0			

Table S2. Statistics of data-collection and refinement

In allowed regions (%)	3.0
Outliers (%)	0

^a $R_{\text{merge}} = \sum_{hkl} \sum_{i} |I_i(hkl) - \langle I(hkl) \rangle | / \sum_{hkl} \sum_{i} I_i(hkl)$, where $\langle I(hkl) \rangle$ is the main value of I(hkl).

^b *R*-factor = $\sum ||F_{obs}| - |F_{calc}|| / \sum |F_{obs}|$, where F_{obs} and F_{calc} are observed and calculated structure factors.

The free R factor was calculated using 5% of reflections omitted from the refinement.

Distance (Å)	Chain A	Chain B	Chain C	Chain D	WTAz
S _{Cys131} -Cu	2.179	2.186	2.140	2.181	2.24
N _{His65} -Cu	2.081	2.089	2.146	2.075	2.01
N _{His3} -Cu	2.089	2.088	2.071	2.093	2.08
S _{Met7} -Cu	3.263	3.357	3.323	3.220	3.15
O _{Gly64} -Cu	2.729	2.753	2.825	2.766	2.97
N_{Asn66} - S_{Cys131}	3.492	3.520	3.525	3.482	3.61
N_{Phe133} - S_{Cys72}	3.448	3.433	3.485	3.492	3.46
O^{γ}_{Asn66} - N_{Thr132}	2.928	2.894	2.853	2.923	2.89
$N^{\delta}_{Asn66}\text{-}O^{\gamma}_{Thr132}$	2.987	2.962	2.877	2.956	2.91

 Table S3 Distances between ligands and copper for Az-loop