Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supplementary material

Highly sensitive and selective fluorescent detection of Hg²⁺ based on turn-on aptamer DNA silver nanoclusters

Baozhu Zhangab and Chunying We*a

^a Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of

Molecular Science, Shanxi University, Taiyuan 030006, P. R. China

^b College of Chemistry and Chemical Engineering, Jinzhong University, Yuci 030600, P. R. China

*Corresponding author.

E-mail address: weichuny@sxu.edu.cn. (C. Wei)

Table S1 Names and sequences of the oligonucleotides.

Oligonucleotides	Sequences (5'- 3')		
Hg ²⁺ -Aptamer-1	TTCTTTCTTCCCCTTGTTTGTT		
Hg ²⁺ -Aptamer-2	TTTTTTTTTTTTTTTT		
C-Hg ²⁺ -Aptamer-1	CCCTTAATCCCC	ттстттсттссссттдтттдтт	
	CCCTTAATCCCC		
C- Hg ²⁺ -Aptamer-	CCCTTAATCCCC TTTTTTTTTTTTTTTT CCCTTAATCCCC		
2			

Table S2 The lifetimes of C-Hg-Aptamer-1-AgNCs in the absence and presence of different concentration of Hg²⁺.

Samples	[Hg ²⁺] (nM)	$ au_{1}$ (ns)	$ au_2$ (ns)	$ au_3$ (ns)	$ au_{avg}$ (ns)	χ^2
Hg Aptamer -	0	0.2024 (23.62%)	2.7054 (66.82%)	6.7688 (9.56%)	2.5027	1.042
AgNCs						
Hg Aptamer - AgNCs + Hg ²⁺	5	0.1751 (29.04%)	2.6842 (59.94%)	8.1248 (11.02%)	2.5552	1.177
	10	0.1692 (26.42%)	2.7768 (64.28%)	7.9960 (9.30%)	2.5733	1.008
	15	0.2507 (25.76%)	2.8119 (66.76%)	8.6620 (7.47%)	2.5889	1.205

 $\textbf{Table S3} \ \ \text{Comparison of optical sensors for the detection of } \ \ \text{Hg}^{2+}.$

Detection	Materials	LOD (nM)	Linear range (nM)	References
methods				
Colorimetry	Gold nanoparticles	35	0–9000	42
Colorimetry	Gold nanorods	60	500-25000	43
Fluorescence	PI/PC-AgNCs	3	500-1000	44
		9	500-10000	
Fluorescence	DNA-AgNCs	5	5–100	31
Fluorescence	DNA-AgNCs	4.5	0-150	32
Fluorescence	ТОТО-3	3	10-200	45
Electrochemistry	Graphene oxide	1	1–300	46
Fluorescence	DNA-AgNCs	0.25	2–18	This work

Fig. S1 Fluorescence emission spectra of C-Hg $^{2+}$ -Aptamer-1-Ag NCs in the absence (A) and presence (B) of 10 nM Hg $^{2+}$ under different excitation wavelengths.

Fig. S2 (A) UV-Vis spectra of C-Hg²⁺-Aptamer-2-AgNCs in the absence (a) and presence of 10 nM Hg²⁺ (b). Fluorescence emission spectra of C-Hg²⁺-Aptamer-2-AgNCs (B) in the absence and (C) presence of 10 nM Hg²⁺ under different excitation wavelengths. (D) The fluorescence intensity of C-Hg²⁺-Aptamer-2-AgNCs in the absence (1) and presence of 10 nM Hg²⁺ (2). (E) CD spectra of C-Hg²⁺-Aptamer-2-AgNCs without (a) and with (b) 20 nM Hg²⁺. All measurements were performed in 20 mM PBS buffer (pH 6.3).

Fig. S3 The fluorescence lifetimes of C-Hg²⁺-Aptamer-1-Ag NCs (excitation at 405 nm and emission at 620 nm) incubating without and with the different concentration of Hg²⁺.

Fig. S4 The F/F_0 of (A) C-Hg²⁺-Aptamer-1-Ag NCs and (B) C-Hg²⁺-Aptamer-2-Ag NCs at different pH values. F_0 and F were the maximum emission intensity of the DNA-Ag NCs incubating without and with 10 nM Hg²⁺, respectively.

Fig. S5 The changes of the fluorescence intensity of (A) the C-Hg²⁺-Aptamer-1-AgNCs and (B) the C-Hg²⁺-Aptamer-2-AgNCs in the presence of 10 nM Hg²⁺ against the increasing reaction time with NaBH₄.

Fig. S6 The change of fluorescence intensity of (A) the C-Hg²⁺-Aptamer-1-AgNCs and (B) the C-Hg²⁺-Aptamer-2-AgNCs probes *against* the increasing reaction time with NaBH₄.

Fig. S7 (A) Fluorescence emission spectra (λ_{ex} = 570 nm) of C-Hg-Aptamer-2-DNA-Ag NCs incubating with different concentrations of Hg²⁺ for 1 h. (B) Fluorescence intensity as a function of Hg²⁺ concentration. The insert showed the linear range of 2-18 nM (R = 0.9972). The error bar represented the standard deviation of three independent measurements.