Supporting Information for

Interaction between functionalized graphene and sulfur compounds in lithium-sulfur battery – a density functional theory investigation

Kimal Chandula Wasalathilake^a, Md Roknuzzaman^a, Kostya (Ken) Ostrikov^a, Godwin A. Ayoko^a and Cheng Yan^{*a}

^aSchool of Chemistry, Physics and Mechanical Engineering, Faculty of Science and Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia

*Email: c2.yan@qut.edu.au

(d)

(e)

Fig. S1 Different configurations and corresponding adsorption energies of Li_2S_8 and Li_2S_4 on hG (a,d), eG (b,e) and cG (c,f)

Fig. S2 Optimized structure of Li_2O

Fig. S3 Atomic partial density of states near the Fermi energy region for (a) Li2S8 and (b) Li2S4 on hG, eG and cG

Fig. S4 Total density of states near the Fermi energy region for S8, Li2S8 and Li2S4 on a) hG, b) eG and c) cG

Table S1 Energy components related to adsorption energies of S ₈ , Li ₂ S ₈ and Li ₂ S ₄ to				
microporous graphene				

Pore Size (Å)	E _{graphene} (eV)	$E_{\rm S}$ where S = S ₈ (eV)	E _{Total} (eV)	E _{ads} (eV)
7.5	-74621.756	-86654.006	-161276.987	-1.22
10	-74621.601	-86654.006	-161276.332	-0.71
12.5	-74621.595	-86654.006	-161276.244	-0.64
15	-74621.584	-86654.006	-161276.210	-0.62
17.5	-74621.525	-86654.006	-161276.126	-0.60
20	-74621.516	-86654.006	-161276.118	-0.60
Pore Size (Å)	E _{graphene} (eV)	$E_{\rm S}$ where S = Li ₂ S ₈ (eV)	E _{Total} (eV)	E _{ads} (eV)
Pore Size (Å) 7.5	E _{graphene} (eV) -74621.756	<i>E</i> _S where S = Li ₂ S ₈ (eV) -87066.246	<i>E</i> _{Total} (eV) -161689.556	<i>E</i> _{ads} (eV) -1.55
Pore Size (Å) 7.5 10	E _{graphene} (eV) -74621.756 -74621.601	<i>E</i> _S where S = Li ₂ S ₈ (eV) -87066.246 -87066.246	<i>E</i> _{Total} (eV) -161689.556 -161688.871	E _{ads} (eV) -1.55 -1.02
Pore Size (Å) 7.5 10 12.5	<i>E</i> _{graphene} (eV) -74621.756 -74621.601 -74621.595	<i>E</i> _S where S = Li ₂ S ₈ (eV) -87066.246 -87066.246 -87066.246	<i>E</i> _{Total} (eV) -161689.556 -161688.871 -161688.825	<i>E</i> _{ads} (eV) -1.55 -1.02 -0.98
Pore Size (Å) 7.5 10 12.5 15	<i>E</i> _{graphene} (eV) -74621.756 -74621.601 -74621.595 -74621.584	<i>E</i> _s where S = Li ₂ S ₈ (eV) -87066.246 -87066.246 -87066.246 -87066.246	<i>E</i> _{Total} (eV) -161689.556 -161688.871 -161688.825 -161688.726	E _{ads} (eV) -1.55 -1.02 -0.98 -0.90
Pore Size (Å) 7.5 10 12.5 15 17.5	<i>E</i> _{graphene} (eV) -74621.756 -74621.601 -74621.595 -74621.584 -74621.525	<i>E</i> _s where S = Li ₂ S ₈ (eV) -87066.246 -87066.246 -87066.246 -87066.246 -87066.246 -87066.246	<i>E</i> _{Total} (eV) -161689.556 -161688.871 -161688.825 -161688.726 -161688.667	<i>E</i> _{ads} (eV) -1.55 -1.02 -0.98 -0.90 -0.90

Pore Size (Å)	E _{graphene} (eV)	$E_{\rm S}$ where S = Li ₂ S ₈ (eV)	E _{Total} (eV)	E _{ads} (eV)
7.5	-74621.756	-87066.246	-161689.556	-1.55
10	-74621.601	-87066.246	-161688.871	-1.02
12.5	-74621.595	-87066.246	-161688.825	-0.98
15	-74621.584	-87066.246	-161688.726	-0.90
17.5	-74621.525	-87066.246	-161688.667	-0.90
20	-74621.516	-87066.246	-161688.496	-0.73

Table S2 Summary of adsorption energies between different substrates and S species

Substrate	Adsorption Energy (eV)			
	S ₈	Li_2S_8	Li ₂ S ₄	
Graphene	-0.64	-0.93	-0.74	
hG	-0.63	-1.23	-1.43	
eG	-0.63	-1.08	-1.07	
cG	-0.65	-1.29	-0.95	

Table S3 Total DOS value at $E_{\rm f}$ of Sulfur species in different substrates

Species	Total DOS value at <i>E</i> _f	
	(electrons/eV)	
S ₈ /Graphene	4.32665	
Li ₂ S ₈ /Graphene	9.33993	
Li ₂ S ₄ /Graphene	6.48636	
hG	3.98315	
S ₈ /hG	3.99742	
Li ₂ S ₈ /hG	4.23578	
Li ₂ S ₄ / hG	4.30917	
eG	3.15841	
S ₈ /eG	3.14733	
Li ₂ S ₈ /eG	9.82511	
Li ₂ S ₄ /eG	7.54303	
cG	3.91877	
S ₈ / cG	3.91533	
Li ₂ S ₈ /cG	4.24859	
Li ₂ S ₄ /cG	4.93481	

Table S4 Bond lengths after adsorption

	Li2S8-hG	Li2S8-eG	Li2S8-cG	Li2S4-hG	Li2S4-eG	Li2S4-cG
Li-O distance (A)	1.869	1.958	1.988	1.993	2.010	1.979
Li-S distance	2.476	2.477	2.476	2.463	2.449	2.435