Supporting Information

Effect of MWCNTs-modified graphite felts on hexavalent chromium removal in biocathode microbial fuel cells

Xiayuan Wu^{a,b} · Xiaomin Xiong^a · Gianluca Brunetti^b · Xiaoyu Yong^a · Jun Zhou^a · Lijuan

Zhang^a · Ping Wei^a · Honghua Jia^{a,*}

^aBioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China

^bFuture Industries Institute, School of Natural and Built Environments, University of South Australia, Adelaide, South Australia 5095, Australia

*Corresponding author:

Honghua Jia

Nanjing Tech University, No.30 Puzhu Road(S), Nanjing, 211816, Jiangsu, P.R. China

Tel./Fax: +86 25 58139929

E-mail: hhjia@njtech.edu.cn

TEXT (1) FIGURES (3) PAGES (5)

Calculations

1. Total coulombs transferred (*C_t*): $C_t = \int_0^t I dt$

where, I is the current and t is the total time of current flow.

2. Total coulombs required (C_r) for the reduction of Cr(VI) to Cr(III):

$$C_r = \frac{nFVc}{M}$$

where, *n* is the number of electrons involved in Cr(VI) reduction (3 moles/mol), *F* is the Faraday constant (96,485.3 Coulombs/mol), *V* is the volume of the catholyte (L), *c* is the concentration of Cr(VI) (g/L) and *M* is the molecular weight of chromium (52 g/mol).

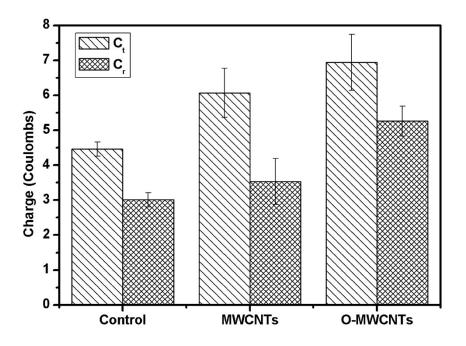


Fig. S1. The comparison of the total coulombs transferred (C_t) and coulombs required (C_r) for the reduction of Cr(VI) in the different MFCs at the end of 10 h operation time.

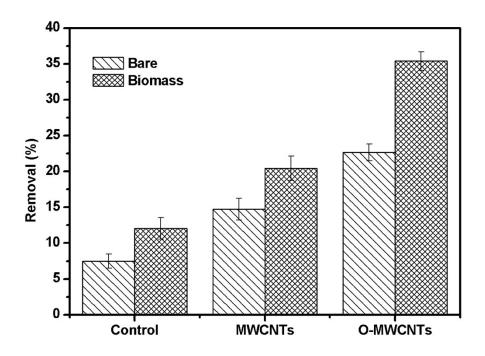
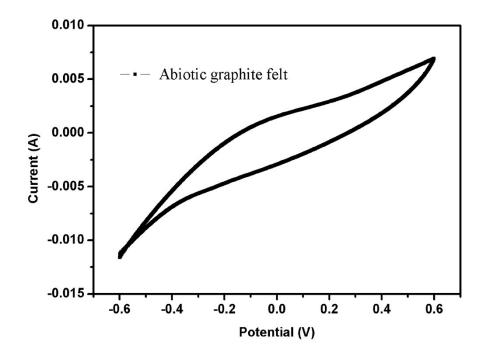



Fig. S2. The Cr(VI) removal of the three electrodes with and without biomass after 24h-adsorption experiment.

Fig. S3. Cyclic voltammogram of the abiotic graphite felt in a MFC (vs. Ag/AgCl, scan rate of 5 mV/s over the range –600 mV to +600 mV).