SUPLIMENTARY MATERIALS

Shaping of Porous Metal–Organic Framework Granules Using Mesoporous ρ-Alumina as Binder

Anil H. Valekar^{a,b}, Kyung-Ho Cho^a, U-Hwang Lee^{a,b*}, Ji-Sun Lee^a, Ji Woong Yoon^a,

Young Kyu Hwang^{a,b}, Seung Gwan Lee^c, Sung June Cho^{c*}, and Jong-San Chang^{a,d*}

Figure S1: Photograph and SEM image of rod-shaped MIL-100(Fe) using MRA binder.

Figure S2: Pore-size distribution curves of powder and spheres of MIL-100(Fe) (left) and MIL-101(Cr) (right), calculated by density functional theory (DFT).

Figure S3: SEM images of MRA at a) low and b) high magnification and SEMimages of c) MIL-100(Fe) powder, d) MIL-100(Fe) spheres, e) MIL-101(Cr) powder, f) MIL-101(Cr) spheres, g) UiO-66(Zr) powder, and f) UiO-66(Zr) spheres.All shaped MOF bodies contained 5 wt% MRA binder.

Figure S4: SEM-EDS elemental mapping of interior of spheres of MIL-101(Cr). Red areas indicate the presence of A1 from 20 wt% MRA binder

Activation condition : 250°C for 6 h h

Figure S5: Temperature-dependent in-situ pyridine-IR spectra of MIL-100(Fe) powder and spheres with different MRA contents (indicated in parentheses).

Figure S6: Comparison of powder, sphere, and pellet form of MIL-100(Fe): a) XRD patterns and b) N₂ adsorption isotherms at 77 K.

Figure S7: Comparison of powder, sphere, and pellet form of MIL-101(Cr): a) XRD patterns and b) N₂ adsorption isotherms at 77 K.

MOF	Additives	Shaped body	BET Surface area (m ² /g)			Pore volume (cm ³ /g)		Ref
			Powder	Shaped body	Loss (%)	Powder	Shaped body	
Zr-MOF (UiO-66)	10% Sucrose ^a	Spheres	1367	674	50.7	0.44	0.21	1
MIL-125 (Ti)_NH ₂	8% Polymer ^a	Granules	1250	930	25.6	0.5	0.36	2
SIM-1	NO ^b	Pellet	516	458- 370	11.2- 28.3			3
UiO-66 ^b	1% graphite ^b	Pellet	1140	885	22.4			4
HKUST-1	37-67% polystyrene ^c	Microsph- eres	1430	757-32	47.1- 97.8			5
UiO-66	23-33% Polyurethane	Foam	1175	511- 427	56.5- 63.7	0.5	0.21- 0.17	6
ZIF-8	20-50 Polysulfone ^d	Sphere	1023	761- 128	25.6- 87.5			7

Table S1. Summary of porous properties of MOFs before and after shaping by variousshaping methods.

^a -granulation, ^b-pressing, ^c-spray drying and ^d-composite mixture shaping methods were used to shape the respective MOF.

References

1. J. Ren, N. M. Musyoka, H. W. Langmi, A. Swartbooi, B. C. North, M. Mathe *Int. J. Hydrogen Energ*, 2015, **40**, 4617-4622.

M. J. Regufe, J. Tamajon, A. Ribeiro, A. Ferreira., U-H. Lee, Y. Hwang, J.-S. Chang,
C. Serre, J. Loureiro, A. Rodrigues, *Energy & Fuels*, 2015, 29, 4654-4664.

3. D. Bazer-Bachi , L. Assié , V. Lecocq, B. Harbuzarua, V. Falk, *Powder Technol.*, 2014, **255**, 52–59.

M. A. Moreira, J. C. Santos, A. F. P. Ferreira, J. M. Loureiro, F. Ragon, P. Horcajada,
K.-E. Shim, Y.-K. Hwang, U.-H. Lee, J.-S. Chang, C. Serre, A. E. Rodrigues,
Langmuir, 2012, 28, 5715–5723

5. A. Carne-Sanchez, I. Imaz1, M. Cano-Sarabia, D. Maspoch, *Nature Chem*, 2013, 5, 203-211.

6. M. L Pinto, S. Dias, J. Pires, ACS Appl. Mater. Interfaces, 2013, 5, 2360-2363.

L. Li, J. Yao, P. Xiao, J. Shang, Y. Feng, P. A. Webley, H. Wang, *Clloid. Polym. Sci.* 2013, 291, 2711-2717.