Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Figure S1. TEM images of $Fe(OH)_3/GO$ obtained by mixing $Fe(OH)_3$ sol and GO solution with (a) or without (b) adding hydrazine. (c) SEM image of the above $Fe(OH)_3/GO$ with adding hydrazine. (d) XRD patterns of the $Fe(OH)_3/GO$ and $Fe(OH)_3/GO$ after adding hydrazine.

Figure S2. TEM images of $Fe_3O_4/rGO-180$ (a) and Fe_2O_3/rGO (b), and XRD pattern of Fe_2O_3/rGO (c). Fe_2O_3/rGO was obtained from hydrothermal reaction with Fe(OH)3, GO as precursors and hydrazine as reductants.

Figure S3. BET surface area of Fe₃O₄, rGO and Fe₃O₄/rGO.

Figure S4. TEM images of Fe_3O_4 nanoparticles at different magnifications. Fe_3O_4 was obtained from hydrothermal reaction using Fe(OH)3 as precursors, and VC and hydrazine as reductants.

Figure S5. (a) TEM images of Fe $_3O_4$ /rGO-180. (b and c) SEM images of Fe $_3O_4$ /rGO

at different magnifications.

Figure S6. The first cycle charge-discharge profiles of cells with Fe₃O₄, rGO,

Fe₃O₄/rGO-180 or Fe₃O₄/rGO.

Figure S7. (a) Coulombic efficiencies of cells with rGO, Fe_3O_4 , $Fe_3O_4/rGO-180$ or Fe_3O_4/rGO at a current density of 0.5 A g⁻¹. (b) Long-term charge-discharge Coulombic efficiencies of cells with Fe_3O_4 or Fe_3O_4/rGO .

Figure S8. The equivalent circuit used for fitting cell resistances.