Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Ligand Steric Effects on *a*-Diimine Nickel Catalyzed Ethylene and 1-Hexene Polymerization

Jinlong Sun,^a Fuzhou Wang,^{*ab} Weimin Li^a and Min Chen^{*a}

^a Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of

Pertrochemical Engineering, Changzhou University, Changzhou 213164, China.

^b Graduate School of Engineering, Hiroshima University, Kagamiyama 1-4-1, Higashi-Hiroshima 739-8527, Japan.

*Correspondence to: F. Z. Wang (E-mail: wangfuzhou1718@126.com) M. Chen (E-mail: misschen@ustc.edu.cn)

Contents

1. Synthesis and Characterization

- 1.1. Synthesis of α -diimine ligands L1–L6 and complexes 1–6
- 1.2. NMR spectrum of the ligands L2-L6
- 2. X-ray Structure Determination

3. Microstructure Analysis of Polymer

- 3.1. Equations for the microstructure analysis of the polymers
- 3.2. ¹H and ¹³C NMR spectrum of polyethylenes
- 3.2. ¹H and ¹³C NMR spectrum of poly(1-hexene)s

4. GPC Curves for the Polyethylenes

5. References

1. Synthesis and Characterization

1.1. Synthesis of α-diimine ligands L1–L6 and complexes 1–6

The desired ligands were prepared by the Schiff base condensation using *p*-toluenesulfonic acid (*p*-TsOH) as catalyst in high yields (**Scheme S1**). All α -diimine ligands **L1–L6** were characterized by elemental analysis, ¹H NMR and ¹³C NMR. Complexes **1–6** were synthesized from the reactions of the corresponding ligand with (DME)NiBr₂ in high yields. These complexes were characterized by IR spectroscopy and elemental analysis.

Scheme S1. Synthesis of α -difficult eligands L1–L6 and their complexes 1–6.

All α -diimine ligands **L1–L6**^[1–4] , {bis[*N*,*N*'-(4-methyl-2,6-dibenzhydrylphenyl)imino]-2,3-butadiene}dibromidonickel **1**^[2] , {bis[*N*,*N*'-(4-methyl-2,6-di-*sec*-phenylethylphenyl)imino]-2,3-butadiene}dibromidonickel **5**^[4] and {bis[*N*,*N*'-(2,4,6-trimethylphenyl)imino]-2,3-butadiene}dibromidonickel **6**^[4] were synthesized according to the literature.

1.2. NMR spectrum of the ligands L2-L6

Fig. S1. ¹H and ¹³C NMR spectrum of ligand L2.

Fig. S2. ¹H and ¹³C NMR spectrum of ligand L3.

Fig. S3. ¹H and ¹³C NMR spectrum of ligand L4.

2. X-ray structure determination

Complex	2	3	5
Empirical Formula	$C_{49}H_{49}Br_2N_2Ni$	$C_{45}H_{42}Br_2N_2Ni$	$C_{50}H_{42}Br_2N_2Ni_2$
Formula mass	884.43	829.34	899.47
Temperature (<i>K</i>)	298	298	293
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal size (mm^3)	$0.26 \times 0.15 \times 0.12$	$0.27 \times 0.10 \times 0.05$	$0.24 \times 0.21 \times 0.06$
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_1/c$	$P2_1/n$	P2/a
<i>a</i> (Å)	25.465 (2)	9.1819 (9)	22.4157 (8)
<i>b</i> (Å)	17.0368 (17)	23.1568 (19)	8.5771 (3)
c (Å)	22.342 (2)	19.0157 (16)	24.0509 (8)
$V(Å^3)$	8716.6 (14)	3962.1 (6)	4215.0 (2)
Ζ	8	4	4
Density (calcd.) (mg/cm ³)	1.348	1.390	1.417
Absorption coefficient (mm ⁻¹)	2.31	2.539	3.15
<i>F</i> (000)	3640	1696	1856
Theta range for data collec. (°)	2.4–23.9	2.4–28.8	3.7–72.7
Limiting indices	$-30 \le h \le 30$	$-10 \le h \le 10$	$-27 \le h \le 16$
	$-20 \le k \le 20$	$-27 \le k \le 27$	$-10 \le k \le 10$
	$-26 \le l \le 26$	$-11 \le l \le 22$	$-28 \le l \le 29$
No. of rflns collected	15356	18723	14743
No. unique rflns [R(int)]	7209	6939	7775
R _{int}	0.000	0.155	0.029
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.1324$	$R_1 = 0.1136$	$R_1 = 0.0823$
	$wR_2 = 0.3405$	$wR_2 = 0.2199$	$wR_2 = 0.1875$
R indices (all data)	$R_1 = 0.1844$	$R_{I} = 0.2249$	$R_I = 0.1146,$
	$wR_2 = 0.3770$	$wR_2 = 0.2418$	$wR_2 = 0.2022$
Goodness-of-fit on F^2	1.132	1.098	1.26
Max. and min. transmission	0.7688 and 0.5846	0.8835 and 0.5472	1.000 and 0.644
Largest diff. peak and hole (e.Å ⁻³)	2.87 and -3.64	0.89 and -1.34	0.62 and -0.71

Table S1 Crystal Data and Structure Refinement for complexes 2, 3 and 5

3. Microstructure Analysis of Polymer

3.1. Equations for the microstructure analysis of the polymers

Calculation of the degree of branching

The degree of branching was estimated by ¹H NMR spectroscopy and was corrected for end groups as follows ^[5]:

$$B = \frac{2(I_{CH_3})}{3(I_{CH} + I_{CH_2} + I_{CH_3})} \times 1000$$
 S1

Branching degree, the number of methyl carbon in every 1000 carbons, CH₃, CH₂, CH refer to the intensities of the methyl, methylene and methine resonances in ¹H NMR spectra. CH₃ (alkyl methyl, alk-CH₃, m, 0.70–0.95 ppm), CH₂ and CH (alk-CH and alk-CH₂, m, ca. 1.00–1.45 ppm) refer to the intensities of the methyl, methylene and methine resonances in ¹H NMR spectra.

Assignments of the ¹³CNMR spectra and equations for the quantitative analysis of the polyolefins under investigation, according to **equation S2** reported by Azoulay et al. ^[6]. Chemical shift and assignment of the peak listed in the **Table S2** are marked in the spectrum (**Fig. S6**).

CH₃ =
$$(I_2 + I_5)/2 + I_1 + I_3 + I_6$$

Methyl branch, Me = $I_6 - I_4 + I_7$; Ethyl branch, Et = $(I_1 + I_{10})/2$
Propyl branch, Pr = $(I_4 + I_{23})/2$; Butyl branch, Bu = $I_3 - I_8$
sec-Butyl branch, ^sBu = $(I_2 + I_5)/2$; Longer branch, Lg = $(I_8 + I_{17})/2$

Fig. S6. ¹³C NMR spectrum of the polyethylene obtained by complex 1 at 80 °C (entry 15, Table 2).

Peak No.	Chemical shift (ppm)	Assignment	Peak No.	Chemical shift (ppm)	Assignment
1	11.09	1B ₂	14	29.61	$4B_n$
2	11.53	^s Bu	15	29.95	CH_2
3	14.25	1B4, 1Bn	16	30.36	$\gamma B_{1,} \gamma B_{2+}$
4	14.66	$1B_{3}$	17	32.09	3Bn
5	19.33	^s Bu	18	32.57	3B5
6	19.81	$1B_1$	19	32.94	brB_1
7	19.98	2B ₃	20	33.34	αB_2
8	22.85	$2B_n$	21	33.91	αB_{3+}
9	23.24	$2B_4$	22	34.56	nB_n
10	26.03	$2B_2$	23	36.84	3B3
11	26.95	(<i>n</i> -1)B _n	24	37.33	αB_1
12	27.30	$ ho \mathrm{B}_{2^+}$	25	37.77	brB_n
13	27.66	βB_1	26	39.03	brB_2

Table S2. Chemical shift and assignment of peaks.^a

^a ¹³C NMR (CDCl₃ δ : 77.16 ppm) measurements of the polyethylene are marked in **Fig. S6**; Note on labels: for *x*B_n B_n is a branch of length n carbons, *x* is the carbon being discussed, and the methyl at the end of the branch is numbered 1. Thus, the second carbon from the end of a butyl branch is 2B₄. *x*B_{n+} refers to branches of length n and longer.

3.2. ¹H and ¹³C NMR spectrum of polyethylenes

Fig. S7. ¹H NMR spectrum of polyethylene obtained by complex **1** at 20 °C from **Table 1**, entry 1 (d⁶-benzene, 60 °C, B = 55).

Fig. S8.¹³C NMR spectrum of polyethylene obtained by complex **5** at 50 °C from **Table 1**, entry 11 (d^{6} -benzene, 60 °C).

3.3. ¹H and ¹³C NMR spectrum of poly(1-hexene)s

Fig. S9. ¹H NMR spectrum of poly(1-hexene) obtained by complex **1** at 40 °C from **Table 2**, entry 2 (d⁶-benzene, 60 °C, B = 111.3).

Fig. S10. ¹H NMR spectrum of poly(1-hexene) obtained by complex **1** at 60 °C from **Table 2**, entry 3 (d⁶-benzene, 60 °C, B = 106.7).

Fig. S11. ¹H NMR spectrum of poly(1-hexene) obtained by complex **1** at 80 °C from **Table 2**, entry 4 (d⁶-benzene, 60 °C, B = 105.9).

Fig. S12. ¹H NMR spectrum of poly(1-hexene) obtained by complex **2** at 20 °C from **Table 2**, entry 5 (d⁶-benzene, 60 °C, B = 118.6).

Fig. S13. ¹H NMR spectrum of poly(1-hexene) obtained by complex **2** at 40 °C from **Table 2**, entry 6 (d⁶-benzene, 60 °C, B = 119.0).

Fig. S14. ¹H NMR spectrum of poly(1-hexene) obtained by complex **2** at 60 °C from **Table 2**, entry 7 (d⁶-benzene, 60 °C, B = 121.6).

Fig. S15. ¹H NMR spectrum of poly(1-hexene) obtained by complex **2** at 80 °C from **Table 2**, entry 8 (d⁶-benzene, 60 °C, B = 123.0).

Fig. S16. ¹H NMR spectrum of poly(1-hexene) obtained by complex **3** at 20 °C from **Table 2**, entry 9 (d⁶-benzene, 60 °C, B = 124.5).

Fig. S17. ¹H NMR spectrum of poly(1-hexene) obtained by complex **3** at 40 °C from **Table 2**, entry 10 (d⁶-benzene, 60 °C, B = 118.1).

Fig. S18. ¹H NMR spectrum of poly(1-hexene) obtained by complex **3** at 60 °C from **Table 2**, entry 11 (d⁶-benzene, 60 °C, B = 118.7).

Fig. S19. ¹H NMR spectrum of poly(1-hexene) obtained by complex **3** at 80 °C from **Table 2**, entry 12 (d⁶-benzene, 60 °C, B = 119.0).

Fig. S20. ¹H NMR spectrum of poly(1-hexene) obtained by complex **4** at 40 °C from **Table 2**, entry 14 (d⁶-benzene, 60 °C, B = 134.6).

Fig. S21. ¹H NMR spectrum of poly(1-hexene) obtained by complex **4** at 60 °C from **Table 2**, entry 15 (d⁶-benzene, 60 °C, B = 138.9).

Fig. S22. ¹H NMR spectrum of poly(1-hexene) obtained by complex **4** at 80 °C from **Table 2**, entry 16 (d⁶-benzene, 60 °C, B = 140.0).

Fig. S23. GPC curve for the polyethylene obtained by complex 1 at 50 °C from Table 1, entry 2.

Fig. S24. GPC curve for the polyethylene obtained by complex 3 at 50 °C from Table 1, entry 8.

5. References

- [1] J. L. Rhinehart, L. A. Brown and B. K. Long, A robust Ni(II) α-diimine catalyst for high temperature ethylene polymerization. J. Am. Chem. Soc. 2013, 135, 16316–16319.
- [2] L. H. Guo, S. Y. Dai, C. L. Chen, Investigations of the ligand electronic effects on α -diimine nickel(II) catalyzed ethylene polymerization. *Polymers* **2016**, *8*, 37.
- [3] F. Z. Wang, J. C. Yuan, F. Y. Song, J. Li, Z. Jia and B. N. Yuan, New chiral-diimine nickel(II) complexes bearing *ortho-sec*-phenethyl groups for ethylene polymerization. *Appl. Organomet. Chem.* 2013, 27, 319–327.
- [4] S. Y. Dai, S. X. Zhou, W. Zhang and C. L. Chen, Systematic investigations of ligand steric effects on α-diimine palladium catalyzed olefin polymerization and copolymerization. *Macromolecules* 2016, 49, 8855–8862.
- [5] J. C. Jenkins and M. Brookhart, A highly active anilinoperinaphthenone-based neutral nickel(II) catalyst for ethylene polymerization. *Organometallics* **2003**, *22*, 250–256.
- [6] J. D. Azoulay, G. C. Bazan and G. B. Galland, Microstructural characterization of poly(1-hexene) obtained using a nickel α-Keto-β-diimine initiator. *Macromolecules* 2010, 43, 2794–2800.