Electronic Supplementary Information

Energy transfer between rare earths in layered rare-earth

hydroxides

Pingping Feng, Xinying Wang, Yushuang Zhao, De-Cai Fang, Xiaojing Yang *

College of Chemistry, Beijing Normal University, Beijing, 100875, China. E-mail: yang.xiaojing@bnu.edu.cn; Fax: +86-10-5880-2075; Tel: +86-10-5880-2960.

The abbreviations of the reliability factors (*R*-factors) and goodness-offit indicator after the Rietveld refinement.

- R_{wp}: weighted pattern *R*-factor
- R_p: pattern *R*-factor
- R_R: Rietveld *R*-factor
- R_e: Expected *R*-factor
- S: Goodness-of-fit indicator

SEM/EDX: scanning electron microscopy/energy-dispersive x-ray analysis (FESEM, S-8010, Hitachi; EDX, XFlash6160, BRUKER)

Fig. S1 XRD patterns for $Cl^{-}LEu_{x}Tb_{1-x}Hs$ of (a) x = 0, (b) x = 0.05, (c) x = 0.2, (d) x = 0.8 and (e) x=0.95.

Fig. S2 XRD patterns for NO_3^- -LEu_xTb_{1-x}Hs of (a) x = 0, (b) x = 0.05, (c) x = 0.2, (d) x = 0.8 and (e) x=0.95.

Fig. S3 XRD patterns for DS⁻-LEu_xTb_{1-x}Hs of (a) x = 0, (b) x = 0.05, (c) x = 0.2, (d) x = 0.8 and (e) x=0.95.

Fig. S4 XRD patterns for OA⁻-LEu_xTb_{1-x}Hs of (a) x = 0, (b) x = 0.05, (c) x = 0.2, (d) x = 0.8 and (e) x=0.95.

	d _{basal} / Å						
x	Cl⁻	NO ₃ ⁻	DS⁻	OA⁻	NSs		
0	8.37	8.31 ^{*1}	27.2	45.8	∞ ^{*2}		
0.05	8.30	8.21	26.7	45.9	∞		
0.2	8.42	8.23	26.2	45.4	∞		
0.5	8.32	8.31	25.3	45.9	∞		
0.8	8.38	8.30	26.2	45.8	∞		
0.95	8.35	8.31	26.2	45.9	∞		

Table S1 Basal Spacing of the Various LEu_xTb_{1-x}H Samples.

^{*1} NO₃⁻-LTbH with the d_{basal} of 8.21 Å was also obtained.

^{*2}No peaks but halo was observed in the XRD patterns for the delaminated samples. ∞ is used here, but we consider that the inclusion volume effect in liquid crystal should take place, the distance between the 2 dimensional crystals depends on the volume of the delamination formamide.

Designed	Content cal	Chomical formula				
х	Eu	Tb	Cl	С	Н	
0.05	3.12 (3.33)	58.74 (62.77)	6.15 (6.57)	0.33 (0.35)	1.82 (1.95)	Eu _{0.05} Tb _{0.95} (OH) _{2.42} Cl _{0.44} (CO ₃) _{0.07} ·1.13 H ₂ O
0.2	11.75 (12.65)	50.30 (54.14)	5.73 (6.16)	0.29 (0.31)	1.77 (1.90)	Eu _{0.20} Tb _{0.80} (OH) _{2.47} Cl _{0.41} (CO ₃) _{0.06} ·1.01 H ₂ O
0.5	31.96 (33.41)	32.29 (33.74)	6.19 (6.47)	0.31 (0.32)	1.73 (1.81)	Eu _{0.51} Tb _{0.49} (OH) _{2.45} Cl _{0.42} (CO ₃) _{0.06} ·0.87 H ₂ O
0.8	52.57 (53.06)	13.60 (13.73)	6.50 (6.57)	0.31 (0.31)	1.82 (1.84)	Eu _{0.80} Tb _{0.20} (OH) _{2.46} Cl _{0.42} (CO ₃) _{0.06} ·0.88 H ₂ O
0.95	61.43 (62.75)	3.47 (3.54)	6.33 (6.47)	0.35 (0.34)	1.89 (1.85)	Eu _{0.95} Tb _{0.05} (OH) _{2.45} Cl _{0.42} (CO ₃) _{0.07} ·0.94 H ₂ O

Table S2 Chemical analysis results for the series samples of Cl⁻-LEu_xTb_{1-x}Hs.

Designed	Co	ontent fou	nd (calcula			
x	Eu	Tb	С	Н	Ν	Chemical formula
0		58.6	0.64	1.59	2.45	Tb(OH) _{2.24} (NO ₃) _{0.47} (CO ₃) _{0.14} ·1.0
0		(62.7)	(0.66)	(1.71)	(2.60)	5H ₂ O
0.05	2.82	61.8	0.57	1.78	1.94	Eu _{0.05} Tb _{0.95} (OH) _{2.42} (NO ₃) _{0.34} (CO
0.05	(2.60)	(57.07)	(0.53)	(1.64)	(1.79)	₃) _{0.12} ·0.97H ₂ O
0.2	10.71	47.65	0.62	1.71	1.66	Eu _{0.19} Tb _{0.81} (OH) _{2.40} (NO ₃) _{0.32} (CO
0.2	(11.73)	(52.17)	(0.68)	(1.87)	(1.82)	₃) _{0.14} ·1.11H ₂ O
0.5	29.68	31.28	0.63	1.58	1.62	Eu _{0.50} Tb _{0.50} (OH) _{2.44} (NO ₃) _{0.32} (CO
0.5	(31.86)	(33.57)	(0.68)	(1.70)	(1.74)	₃) _{0.13} ·0.80H ₂ O

0.8	46.40	12.81	0.50	1.65	2.08	Eu _{0.79} Tb _{0.21} (OH) _{2.36} (NO ₃) _{0.41} (CO
	(48.92)	(13.51)	(0.56)	(1.85)	(2.35)	₃) _{0.12} ·1.10H ₂ O
0.05	58.95	3.30	0.66	1.65	1.75	Eu _{0.95} Tb _{0.05} (OH) _{2.46} (NO ₃) _{0.29} (CO
0.95	(62.38)	(3.49)	(0.65)	(1.63)	(1.73)	₃) _{0.13} ·0.66H ₂ O

Fig. S5 FT-IR spectra for NO_3^- -LEu_xTb_{1-x}Hs of (a) x = 0, (b) x = 0.05, (c) x = 0.2, (d) x = 0.5, (e) x = 0.8 and (f) x=0.95.

Fig. S6 FT-IR spectra for DS⁻-LEu_xTb_{1-x}Hs of (a) x = 0, (b) x = 0.05, (c) x = 0.2, (d) x = 0.5, (e) x = 0.8 and (f) x=0.95.

Fig. S7 FT-IR spectra for OA⁻-LEu_xTb_{1-x}Hs when (a) x = 0, (b) x = 0.05, (c) x = 0.2, (d) x = 0.5, (e) x = 0.8 and (f) x = 0.95.

Fig. S8. SEM/EDX mapping images of (A) DS⁻- and (B) OA⁻-LEu_{0.5}Tb_{0.5}H.

Fig. S9 Fitting patterns of EuTb-Tb8 for Cl⁻-LEu_{0.5}Tb_{0.5}H. The experimental and simulated intensity data are plotted as dotted and solid lines, respectively; the line at the bottom is their intensity difference.

Atom	Wyckoff index	x	У	Z	g	B/Ų
Tb	4c	0.272(2)	0.254(1)	0.930(6)	1.0	0.746(5)
Eu(1)	2b	0	0.5	0.949(3)	1.0	0.746(5)
Eu(2)	2a	0	0	0.929(9)	1.0	0.746(5)
OH(1)	4c	0.486(1)	0.269(4)	0.905(3)	1.0	0.550(7)
OH(2)	4c	0.083(5)	0.225(1)	0.847(3)	1.0	0.550(7)
OH(3)	4c	0.164(8)	0.429(5)	0.088(2)	1.0	0.550(7)
OH(4)	4c	0.646(9)	0.431(8)	0.925(1)	1.0	0.550(7)
OH(5)	4c	0.140(1)	0.733(7)	0.829(9)	1.0	0.550(7)
H ₂ O(1)	4c	0.200(7)	0.801(3)	0.375(9)	1.0	3.394(7)
H ₂ O(2)	2b	0	0.5	0.627(6)	0.36	3.394(7)
H ₂ O(3)	2a	0	0	0.616(1)	0.54	3.394(7)

Table S4 Structure parameters of EuTb-Tb8 for Cl⁻-LEu_{0.5}Tb_{0.5}H.

Fig. S10 Fitting patterns of EuTb-Tb9 of Cl^- -LEu_{0.5}Tb_{0.5}H. The experimental and simulated intensity data are plotted as dotted and solid lines, respectively; the line at the bottom is their intensity difference.

Table S5 Structure parameters of EuTb-Tb9 for Cl ⁻ -LEu _{0.5} Tb _{0.5} H.								
Atom	Wyckoff index	x	У	Z	g	B/Ų		
Eu	4c	0.272(0)	0.249(9)	0.928(7)	1.0	0.929(1)		
Tb(1)	2b	0	0.5	0.952(2)	1.0	0.929(1)		
Tb(2)	2a	0	0	0.930(1)	1.0	0.929(1)		
OH(1)	4c	0.485(2)	0.270(1)	0.904(3)	1.0	0.360(3)		
OH(2)	4c	0.083(9)	0.243(0)	0.838(2)	1.0	0.360(3)		
OH(3)	4c	0.165(9)	0.414(5)	0.088(4)	1.0	0.360(3)		
OH(4)	4c	0.645(6)	0.443(3)	0.924(4)	1.0	0.360(3)		

OH(5)	4c	0.145(8)	0.760(3)	0.834(7)	1.0	0.360(3)
H ₂ O(1)	4c	0.198(3)	0.821(9)	0.379(9)	1.0	3.129(7)
H ₂ O(2)	2b	0	0.5	0.606(7)	0.36	3.129(7)
H ₂ O(3)	2a	0	0	0.628(1)	0.54	3.129(7)
Cl	4c	0.125(2)	0.214(3)	0.428(2)	1.0	2.939(7)

Space group: $P2_12_12$ (no. 18); a = 12.863(8) Å; b = 7.292(8) Å; c = 8.431(7) Å; V = 791.0 (3) Å³; $R_{wp} = 7.395\%$, $R_p = 5.788\%$, $R_R = 19.859\%$, $R_e = 2.839\%$, S = 2.604%.

Fig. S11 Fitting patterns of Cl^- -LEu_{0.05}Tb_{0.95}H. The experimental and simulated intensity data are plotted as dotted and solid lines, respectively; the line at the bottom is their intensity difference.

Fig. S12 Fitting patterns of Cl⁻-LEu_{0.2}Tb_{0.8}H. The experimental and simulated intensity data are plotted as dotted and solid lines, respectively; the line at the bottom is their intensity difference.

Fig. S13 Fitting patterns of Cl⁻-LEu_{0.8}Tb_{0.2}H. The experimental and simulated intensity data are plotted as dotted and solid lines, respectively; the line at the bottom is their intensity difference.

Fig. S14 Fitting patterns of Cl⁻-LEu_{0.95}Tb_{0.05}H. The experimental and simulated intensity data are plotted as dotted and solid lines, respectively; the line at the bottom is their intensity difference.

5(9)
5(9)
5(9)
L (1)
9(4)
) (4)
9(4)
L (5)
) (9 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

Table S6 Structure parameters of Cl⁻-LEu_{0.05}Tb_{0.95}H.

Space group: $P2_12_12$ (no. 18); a = 12.817(2) Å; b = 7.261(1) Å; c = 8.422(4) Å; V =783.8 (4) Å³; $R_{wp} = 1.320\%$, $R_p = 1.003\%$, $R_R = 20.359\%$, $R_e = 1.116\%$, S = 1.18%.

Table S7 Structure parameters of Cl⁻-LEu_{0.2}Tb_{0.8}H.

	•	-				
Atom	Wyckoff index	х	у	Z	g	B/Ų
T1	4c	0.271(4)	0.251(6)	0.932(2)	1.0	0.766(6)
Т2	2b	0	0.5	0.949(9)	1.0	0.766(6)
Т3	2a	0	0	0.929(5)	1.0	0.766(6)
OH(1)	4c	0.493(8)	0.291(1)	0.907(1)	1.0	0.796(3)
OH(2)	4c	0.085(7)	0.282(6)	0.851(8)	1.0	0.796(3)
OH(3)	4c	0.158(5)	0.443(5)	0.083(9)	1.0	0.796(3)
OH(4)	4c	0.647(2)	0.426(9)	0.927(5)	1.0	0.796(3)

OH(5)	4c	0.147(1)	0.728(0)	0.826(1)	1.0	0.796(3)
H ₂ O(1)	4c	0.219(8)	0.688(5)	0.372(2)	1.0	4.917(1)
H ₂ O(2)	2b	0	0.5	0.624(8)	0.36	4.917(1)
H ₂ O(3)	2a	0	0	0.608(5)	0.54	4.917(1)
Cl	4c	0.123(0)	0.299(6)	0.438(7)	1.0	0.803(6)

Space group: $P2_12_12$ (no. 18); a = 12.828(3) Å; b = 7.269(8) Å; c = 8.424(6) Å; V = 785.6 (3) Å³; $R_{wp} = 1.563\%$, $R_p = 1.194\%$, $R_R = 19.214\%$, $R_e = 1.250\%$, S = 1.25%.

Table S8 Structure parameters of Cl⁻-LEu_{0.8}Tb_{0.2}H.

Atom	Wyckoff index	х	у	Z	g	B/Ų	
T1	4c	0.270(8)	0.255(1)	0.926(2)	1.0	0.245(8)	
Т2	2b	0	0.5	0.948(2)	1.0	0.245(8)	
Т3	2a	0	0	0.931(6)	1.0	0.245(8)	
OH(1)	4c	0.460(9)	0.250(0)	0.893(4)	1.0	0.285(4)	
OH(2)	4c	0.048(2)	0.129(5)	0.974(5)	1.0	0.285(4)	
OH(3)	4c	0.145(6)	0.434 (0)	0.075(6)	1.0	0.285(4)	
OH(4)	4c	0.654(7)	0.424(0)	0.905(1)	1.0	0.285(4)	
OH(5)	4c	0.139(7)	0.744(3)	0.835(3)	1.0	0.285(4)	
H ₂ O(1)	4c	0.178(9)	0.724(9)	0.373(2)	1.0	1.534(9)	
H ₂ O(2)	2b	0	0.5	0.509(3)	0.36	1.534(9)	
H ₂ O(3)	2a	0	0	0.623(2)	0.54	1.534(9)	
Cl	4c	0.113(6)	0.308(2)	0.432(1)	1.0	1.035(1)	

Space group: $P2_12_12$ (no. 18); a = 12.931(6) Å; b = 7.333(0) Å; c = 8.450(8) Å; V = 801.3 (6) Å³; $R_{wp} = 1.512\%$, $R_p = 1.161\%$, $R_R = 120.777\%$, $R_e = 1.263\%$, S = 1.19%.

Table S9 Structure parameters of $CI^{-}LEu_{0.95}Tb_{0.05}H$.

Atom	Wyckoff index	х	У	Z	g	B/Ų
T1	4c	0.270(7)	0.254(5)	0.927(5)	1.0	0.822(4)
Т2	2b	0	0.5	0.947(4)	1.0	0.822(4)
Т3	2a	0	0	0.931(0)	1.0	0.822(4)
OH(1)	4c	0.468(0)	0.263(6)	0.901(4)	1.0	0.498(2)
OH(2)	4c	0.071(5)	0.167(4)	0.944(3)	1.0	0.498(2)
OH(3)	4c	0.145(5)	0.402(6)	0.084(5)	1.0	0.498(2)
OH(4)	4c	0.652(8)	0.441(1)	0.916(0)	1.0	0.498(2)
OH(5)	4c	0.131(2)	0.739(4)	0.857(0)	1.0	0.498(2)
H ₂ O(1)	4c	0.182(0)	0.771(5)	0.383(9)	1.0	1.572(5)
H ₂ O(2)	2b	0	0.5	0.627(2)	0.36	1.572(5)
H ₂ O(3)	2a	0	0	0.626(9)	0.54	1.572(5)
Cl	4c	0.117(0)	0.299(8)	0.435(1)	1.0	1.423(4)

Space group: $P2_12_12$ (no. 18); a = 12.935(1) Å; b = 7.336(0) Å; c = 8.439(6) Å; V = 800.8 (5) Å³; $R_{wp} = 6.162\%$, $R_p = 4.795\%$, $R_R = 21.478\%$, $R_e = 2.545\%$, S = 2.42%.

Fig. S15 (a, c) Excitation and (b, d) emission spectra of $DS^{-}-LEu_xTb_{1-x}Hs$. The peaks at 483 and 492 nm (dashed line) are due to spectral responses of the equipment by the blank test.

Fig. S16 Emission spectra of NSs-LEu_xTb_{1-x}Hs excited at 284 and 318 nm.