Electronic Supplementary Information for

Highly Stable Mesoporous Silica Nanospheres Embedded with FeCo/Graphitic Shell Nanocrystals as Magnetically Recyclable Multifunctional Adsorbents for Wastewater Treatment

Yonghoon Hong,^{‡a} Da Jeong Kim,^{‡a} In Ae Choi,^a Mou Pal,^b Gaehang Lee,^{*c} Ki Min Nam,^{*d} Won Seok Seo^{*a}

^aDepartment of Chemistry, Sogang University, Seoul, 04107, Republic of Korea ^bInstituto de Física, BUAP, Av. San Claudio y Blvd. 18 Sur Col. San Manuel, Ciudad Universitaria, C.P. 72570 Puebla, Mexico ^cKorea Basic Science Institute and University of Science and Technology, Daejeon 34133, Republic of Korea ^dDepartment of Chemistry, Mokpo National University, Jeonnam 58554, Republic

of Korea

Fig. S1. TEM images of FeCo/GC NCs obtained from (a) 65 nm, (b) 130 nm, and (c) 270 nm FeCo/GC NCs@MSNs after HF treatment.

Fig. S2. XRD pattern of MSNs.

Fig. S3. EDX data of (a) 65 nm, (b) 130 nm, and (c) 270 nm FeCo/GC NCs@MSNs.

Fig. S4. (a) Temperature-dependent magnetization curves under an applied field of 100 Oe and (b) Field-dependent magnetization curves at 300 K for 130 nm FeCo/GC NCs@MSNs. Inset in (b) shows the loop on an enlarged x-axis scale.

Fig. S5. Photographs of 130 nm (a, b) FeCo/GC NCs@MSNs-SH and (c) FeCo NCs@MSNs-SH in 35% HCl solutions (a, c) and a 1 mM NaOH (pH 11) solution (b). TEM images of FeCo/GC NCs@MSNs-SH stored over a monitoring period of a week in the (d) HCl and (e) NaOH solutions, respectively. FeCo/GC NCs@MSNs-SH exhibited stability against HCl or NaOH etching over a

monitoring period of a week. However, FeCo NCs@MSNs-SH having FeCo (being unencapsulated with a carbon shell) NCs turned the color to green in the HCl solution right after the addition due to the Fe and Co etching.

Fig. S6. FT-IR data of 130 nm MSNs.

Fig. S7. TEM images of 130 nm (a) MSNs-SH and (b) FeCo/GC@MSNs-SH.

Fig. S8. Effect of pH on the adsorption of (a) MB, (b) MO, and (c) Hg^{2+} onto the FeCo/GC NCs@MSNs-SH.

Fig. S9. TEM images of 130 nm FeCo/GC NCs@MSNs-SH after the six consecutive adsorption cycles for MO.

Sample	BET surface area (m ² /g)	Pore volume (cm ³ /g)	pore size (nm)
MSNs	661	0.73	2.45
FeCo/GC NCs@MSNs	442	0.65	2.19

Table S1. Physicochemical properties of selected samples.

Table S2. Langmuir isotherm parameters for MB adsorption on various adsorbents.

Comple	Langmuir model			
Sample	q_{max}	b	R^2	
MSNs	20.33	1.54	0.99	
FeCo/GC NCs@MSNs	28.99	2.97	0.99	
FeCo/GC NCs@MSNs-SH	37.17	3.49	0.99	

Table S3. Langmuir isotherm parameters for MO adsorption on various adsorbents.

Somalo -	Langmuir model			
Sample –	q max	b	R^2	
MSNs	3.33	0.38	0.97	
FeCo/GC NCs@MSNs	13.39	0.48	0.98	
FeCo/GC NCs@MSNs-SH	15.75	0.57	0.99	

Magnetic adsorbents for MB	q e	pH	References
RGO–MnFe ₂ O ₄ hybrid	34.7	_	S. Bai et al. (2012) ¹
Fe3O4@C	52.5	7.0	S. P. Wu et al. $(2016)^2$
MMWCNT	11.9	7.0	J. L. Gong et al. (2009) ³
M-MWCNTs	45.8	7.0	L. Ai et al. (2011) ⁴
MGO	275.9	9.0	Y. F. Guo et al. $(2016)^5$
CS/Mt-OREC	9.7	7.0	L. Zeng et al. (2015) ⁶
x-Fe ₂ O ₃ /C composites	193.4	-	J. Xiao et al. (2013) ⁷
FeCo/GC NCs@MSNs-SH	36.8	7.0	This Study
Magnetic adsorbents for MO	q e	pH	References
m-CS/c-Fe ₂ O ₃ /MWCNTs	61.4	-	H. Y. Zhu et al. (2010) ⁸
CS/Mt-OREC	5.0	7.0	L. Zeng et al. (2015) ⁶
CANF	102.0	4.0	B. Tanhaei et al. (2015) ⁹
r-Fe ₂ O ₃ /chitosan	28.5	2.9	R. Jiang et al. (2012) ¹⁰
AC/NiFe ₂ O ₄	93.5	3.0	T. Jiang et al. (2015) ¹¹
FeCo/GC NCs@MSNs-SH	14.6	7.0	This study
Magnetic adsorbents for Hg(II)	q e	pH	References
MAF-SCMNPs	240.0	6.0	S. Bao et al. (2017) ¹²
$Fe_3O_4@Cu_3(btc)_2$	158.2	6.0	F. Ke et al. (2017) ¹³
Fe ₃ O ₄ @SiO ₂ -SH	148.8	6.5	S. Zhang et al. (2013) ¹⁴
PR-MNPs	133	4.0	J. Song et al. (2011) ¹⁵
CG-MCS	220.1	7.0	Y. Wang et al. (2013) ¹⁶
AEPE-PS-MPs	28.7	7.0	K. Jainae et al. (2015) ¹⁷
TETA-PGMA	468	6.0	Y. Wang et al. (2016) ¹⁸
Thiol-functionalized MGO	30.9	_	J. Bao et al. (2013) ¹⁹
HMSMCs	62.8	6.5	X. Zhang et al. (2015) ²⁰
MGO	59.9	6.0	Y. F. Guo et al. $(2016)^5$
$rGO-Fe(0)-Fe_3O_4$	22.0	7.0	P. Bhunia et al. (2012) ²¹
FeCo/GC NCs@MSNs-SH	221.4	4.0	This study

Table S4. Comparison of adsorption capacities of FeCo/GC NCs@MSNs-SH with different adsorbents.

References

- 1 S. Bai, X. Shen, X. Zhong, Y. Liu, G. Zhu, X. Xu and K. Chen, *Carbon*, 2012, **50**, 2337–2346.
- 2 S. P. Wu, J. C. Huang, C. H. Zhuo, F. Y. Zhang, W. C. Sheng and M. Y. Zhu, J. Inorg. Organomet. Polym. Mater., 2016, 26, 632–639.
- 3 J. L. Gong, B. Wang, G. M. Zeng, C. P. Yang, C. G. Niu, Q. Y. Niu, W. J. Zhou and Y. Liang, *J. Hazard. Mater.*, 2009, **164**, 1517–1522.
- 4 L. Ai, C. Zhang, F. Liao, Y. Wang, M. Li, L. Meng and J. Jiang, J. Hazard. Mater., 2011, **198**, 282–290.
- 5 Y. F. Guo, J. Deng, J. Y. Zhu, X. J. Zhou and R. B. Bai, *RSC Adv.*, 2016, **6**, 82523–82536.
- 6 L. Zeng, M. Xie, Q. Zhang, Y. Kang, X. Guo and H. Xiao, *Carbohydr. Polym.*, 2015, **123**, 89–98.
- 7 J. Xiao, L. Qiu, X. Jiang, Y. Zhu, S. Ye and X. Jiang, Carbon, 2013, 59, 372–382.
- 8 H. Y. Zhu, R. Jiang, L. Xiao and G. M. Zeng, *Bioresour. Technol.*, 2010, 101, 5063–5069.
- 9 B. Tanhaei, A. Ayati, M. Lahtinen and M. Sillanpaa, *Chem. Eng. J.*, 2015, 259, 1– 10.
- 10 R. Jiang, Y.-Q. Fu, H.-Y. Zhu, J. Yao and L. Xiao, J. Appl. Polym. Sci., 2012, **125**, E540–E549.
- 11 T. Jiang, Y. D. Liang, Y. J. He and Q. Wang, J. Environ. Chem. Eng., 2015, 3, 1740–1751.
- 12 S. Bao, K. Li, P. Ning, J. Peng, X. Jin and L. Tang, *Appl. Surf. Sci.*, 2017, **393**, 457–466.
- 13 F. Ke, J. Jiang, Y. Li, J. Liang, X. Wan and S. Ko, *Appl. Surf. Sci.*, 2017, **413**, 266–274.
- 14 S. Zhang, Y. Zhang, J. Liu, Q. Xu, H. Xiao, X. Wang and J. Zhou, *Chem. Eng. J.*, 2013, **226**, 30–38.
- 15 J. Song, H. Kong and J. Jang, J. Colloid Interface Sci., 2011, 359, 505-511.
- 16 Y. Wang, Y. Qi, Y. Li, J. Wu, X. Ma, C. Yu and L. Ji, J. Hazard. Mater., 2013, 260, 9–15.
- 17 K. Jainae, N. Sukpirom, S. Fuangswasdi and F. Unob, J. Ind. Eng. Chem., 2015, 23, 273–278.
- 18 Y. Wang, Y. Zhang, C. Hou, X. He and M. Liu, J. Taiwan Inst. Chem. E., 2016, 58, 283–289.
- 19 J. Bao, Y. Fu and Z. H. Bao, Nanoscale Res. Lett., 2013, 8, 486–492.
- 20 X. Zhang, T. Wu, Y. Zhang, D. H. L. Ng, H. Zhao and G. Wang, *RSC adv.*, 2015, 5, 51446–51453.
- 21 P. Bhunia, G. Kim, C. Baik and H. Lee, *Chem. Commun.*, 2012, 48, 9888–9890.