Supplementary Information

A dual-emission Nano-Rod MOF equipped with carbon dots for visual detecting

doxycycline and sensitive sensing MnO₄-

Xin Fu, Rui Lv, Jian Su, Hui Li, Boyi Yang, Wen Gu*, Xin Liu*

^a College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Collaborative Innovation Centre of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China.

Supporting Figures

Fig. S1 The SEM pictures of (a) MOF(Eu) and (b) CDs@MOF(Eu).

Fig. S2 The microstructure TEM pictures of CDs@MOF(Eu) under different magnification.

Fig. S3 FT-IR spectra of MOF(Eu) and CDs@MOF(Eu).

Fig. S4 The specificity comparison of four tetracycline antibiotics.

Fig. S5 Emission spectra of MOF(Eu) adding MnO_4 - (0-32 μ M).

Fig. S6 The absorption spectrum of CDs@MOF(Eu) before and after adding KMnO₄.

Fig. S7 SEM images of (a)-(c) CDs@MOF(Eu)-KMnO₄ hybrid system and the corresponding element mapping images of (d) C; (e) O; (f) Eu; (g) Mn recorded from (c).

Fig. S8 (a) XPS broad scans; (b) C1s XPS spectrum; (c) O1s XPS spectrum; (d) N1s XPS spectrum and (e) Mn2p XPS spectrum of CDs@MOF(Eu)-KMnO₄ hybrid system.

Fig. S9 The absorption spectrum of different anions and the excitation for MOF(Eu).

Fig. S10 XRD patterns of CDs@MOF(Eu), CDs@MOF(Eu)-KMnO₄ hybrid system and MOF(Eu)-KMnO₄ hybrid system.

Supporting Tables

Method	Linear detection range	LOD	References
Sequential injection chromatography (SIC)	2-100 μg/mL	4.325 μM	[1]
Micellar electrokinetic capillary chromatography (MEKC)	1.04×10 ⁻⁵ -1.90×10 ⁻⁴ M	2.0 μΜ	[2]
High-performance liquid chromatography with UV detection	25.2 – 252 μg/mL	1.15 μg/mL	[3]
Molecularly imprinted polymers- based electrochemical method	$50-500\ \mu M$	42.5 μΜ	[4]
CDs@MOF(Eu) hybrid material	0-60 μΜ	0.36 μM (0.1665 μg/mL)	This work

 Table S1 Comparison of analytical performance of doxycycline with traditional methods.

Table S2 Comparison of analytical performance of the MnO_4 - with other materials.

Method	Linear detection range	LOD	References
In-MOF-Eu	0-500 μΜ	$1.47 \times 10^{-4} \ \mu M$	[5]
Tyloxapol	0-120 μΜ	0.3924 μM	[6]
534-MOF-Tb		0.34 mM	[7]
[Pb(BPDP)] (1) and [Pb ₃ (BPDP) _{1.5} (OOCC ₆ H ₄ C OOH) ₃] (2)	10-100 μΜ		[8]
CDs@MOF(Eu) hybrid material	0-100 μΜ	0.68 μΜ	This work

References

- D. Šatínský, L. M. L. Dos Santos, H. Skelenářová, P. Solich, M. C. B. S. M. Montenegro and A. N. Araújo, *Talanta*, 2005, 68, 214-218.
- 2. R. Injac, J. Kac, S. Kreft and B. Strukelj, Anal. Bioanal. Chem., 2007, 387, 695-701.
- S. S. Mittić, G. Ž. Miletić, D. A. Kostić, D. Č. Nasković-Đokić, B. B. Arsić and I. D. Rašić, J.Serb.Chem.Soc., 2008, 73, 665-671.
- 4. B. Gürler, S. F. Özkorucuklu and E. Kır, J. Pharm. Biomed. Anal., 2013, 84, 263-268.
- 5. J. X. Wu, B. Yan, Journal of Colloid and Interface Science, 2017, 504, 197-205.
- P. Ding, X. Xin, L. L. Zhao, Z. C. Xie, Q. H. Zhang, J. M. Jiao and G. Y. Xu, *RSC Adv.*, 2017, 7, 3051-3058.
- M. Chen, W. M. Xu, J. Y. Tian, H. Cui, J. X. Zhang, C. S. Liu and M. Du, J. Mater. Chem. C, 2017, 5, 2015-2021.
- B. Xing, H. Y. Li, Y. Y. Zhu, Z. Zhao, Z. G. Sun, D. Yang and J. Li, *RSC Adv.*, 2016, 6, 110255–110265.