Electronic Supplementary Information

Synthesis of water-degradable silica nanoparticles from carbamatecontaining bridged silsesquioxane precursor

Zhe Gao,^a Seyyed Pouya Hadipour Moghaddam,^{b, c} Hamidreza Ghandehari,^{b,c,d} and Ilya Zharov^{a,*}

Contents

- 1. Molybdenum blue colorimetric experiment
- 2. Supplementary table
- 3. Supplementary figures

1. Molybdenum Blue colorimetric experiment

All the solutions were contained in polyethylene bottles. Standard silicic acid solution was made by diluting sodium silicate solution (Na₂Si₃O₇, 242.23 g/mol). Three solution stocks were prepared: (1) 3.1 g of ammonium molybdate tetrahydrate dissolved in 50 mL of 1 M sulfuric acid, (2) 6.3 g of oxalic acid dihydrate dissolved in 50 mL of Millipore water, and (3) 1.76 g of ascorbic acid dissolved in 50 mL of Millipore water. Sonication was used to help dissolve the salts. In order to make a calibration curve, the standard silicic solutions with concentrations of 1.72×10^{-5} M, 8.56×10^{-5} M, 1.703×10^{-4} M, 2.54×10^{-4} M, 3.37×10^{-4} M, and 4.195×10^{-4} M were prepared, respectively. 100 µL of solution 1 was added to 2 mL of the sample. After 10 min, the solution became yellow due to the formation of yellow phosphate molybdenum complex. 100 µL of solution 2 was then added and the yellow color faded in 1 min. The addition of 100 µL of solution 3 resulted in a color change to blue. The mixture was allowed to sit for an additional 10 min until the completion of the blue complex formation. The UV-vis spectrum featured a molybdenum blue peak at 810 nm. The concentration of silicic acid was calculated from the calibration curve. 10 mg of 340 nm Stöber SiNPs and ICPTES-sorbitol SiNPs were each separately dispersed in 20 mL of Millipore water. An aliquot of each solution was centrifuged every hour. 100 µL of each supernatant was diluted by 2 mL of water, and the resulting solutions were tested by the procedure aforementioned.

2. Supplementary table

Run No.	ICPTES-Sorbitol (mol) ×10 ⁻⁴	TEOS (mol) ×10 ⁻³	Ethanol (mL)	NH4OH (mL)	Time (hr)
1	3.0	0.68	10	5	18
2	3.0	1.4	10	5	18
3	3.0	4.5	10	5	18
4	3.0	4.5	11.25	3.75	18
5	3.0	9.0	12	4	18
6	0.30	0.14	10	5	2
7	0.60	0.28	10	5	2

Table S1. The reaction conditions for fabrication of ICPTES-Sorbitol SiNPs

3. Supplementary figures

Fig. S1. ¹³C NMR (Top) and H NMR (Bottom) overlay spectra of ICPTES (Green) and ICPTES-Sorbitol (Black).

Fig. S2. SEM images of ICPTES-Sorbitol SiNPs synthesized with increasing (a < b < c) concentration of TEOS.

Fig. S3. TEM images of the nanoparticles hydrolysis in water (HCl, pH 2) after 3 weeks.

Fig. S5. Proposed hydrolysis mechanism of ICPTES-Sorbitol.

Fig. S6. Dansyl chloride reacted with primary amines from the hydrolysis of the nanoparticles (left to right): ICPTES-Sorbitol SiNPs at pH 2, pH 4, pH 7, pH 8, TEOS SiNPs at pH 7.