SUPPLEMENTARY DATA FOR

Magnetic Fe_3O_4 (*a*) silica sulfuric acid nanoparticles promoted regioselective protection/deprotection of alcohols with dihydropyran under solvent-free conditions

Kalyani Rajkumari, Juri Kalita, Diparjun Das and Samuel Lalthazuala Rokhum*

Department of Chemistry, National Institute of Technology, Silchar, Silchar-788010, Assam, India

*Corresponding author. Tel.: +91 3842 242915; fax: +91 3842-224797; Email address: rokhum@che.nits.ac.in

Table of Content

H NMR and ¹³ C NMR Spectra of 2-((4-Methylbenzyl)oxy)tetrahydro-2H-pyran (2)	S2
H NMR and ¹³ C NMR Spectra of 2-(4-Methoxybenzyloxy)-tetrahydro-2H-pyran (3)	S3
H NMR and ¹³ C NMR Spectra of tetrahydro-2-(Phenethyloxy)-2H-pyran (6)	S4
H NMR and ¹³ C NMR Spectra of 2-(2-Ethylhexyloxy)-tetrahydro-2H-pyran (7)	S5
H NMR and ¹³ C NMR Spectra of 2-(8-Methylnonyloxy)-tetrahydro-2H-pyran (8)	S 6
H NMR and ¹³ C NMR Spectra of 2-(Octyloxy)tetrahydro-2H-pyran (9)	S7

Fig :- ¹H NMR and ¹³C spectra of 2-((4-methylbenzyl)oxy)tetrahydro-2H-pyran (Table 2, entry 2)

Fig :- ¹H and ¹³C NMR spectra of 2-(4-methoxybenzyloxy)-tetrahydro-2H-pyran (Table 2, entry 3)

Fig :- ¹H and ¹³C NMR spectra of tetrahydro-2-(phenethyloxy)-2H-pyran (Table 2, entry 6)

Fig :- ¹H and ¹³C NMR spectra of 2-(2-ethylhexyloxy)-tetrahydro-2H-pyran (Table 2, entry 7)

Fig :- ¹H and ¹³C NMR spectra of 2-(8-methylnonyloxy)-tetrahydro-2H-pyran (Table 2, entry 8)

Fig :- ¹H and ¹³C NMR spectra of 2-(octyloxy)tetrahydro-2H-pyran (Table 2, entry 9)