Supporting Information

to

Highly efficient mesoporous polymer supported phosphine-gold(I) complexs catalysts for amination of allylic alcohols and

 intramolecular cyclizationHuoliang Gu^{+}, Xiong Sun ${ }^{+}$, Yong Wang, HaihongWu*, PengWu* Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China

Corresponding Authors: hhwu@chem.ecnu.edu.cn; pwu@chem.ecnu.edu.cn

Experimental Section

Synthesis of FDU-type mesoporous polymers. Aqueous solution of $\mathrm{NaOH}(0.13 \mathrm{~g}$, $0.65 \mathrm{mmol}, 20 \mathrm{w} \%)$ was added slowly to Phenol ($0.61 \mathrm{~g}, 6.50 \mathrm{mmol}$) over 10 min with stirring. aqueous solution of formaldehyde ($37 \mathrm{wt} \%, 1.05 \mathrm{~g}$) was added dropwise, and the reaction mixture was stirredat $70^{\circ} \mathrm{C}$ for 60 min . After cooling the mixture to room temperature, the pH of the reaction mixture was adjusted to neutral (7.0) using 0.6 M HCl solution. Dried under vaccum , then resol precursor was obtained. pluronic $127(1.00 \mathrm{~g})$ was dissolved in ethanol $(20.0 \mathrm{~g})$, then the ethanol (25 mL) solution of above resol precursor was added by stirring for 10 min . The solution was transferred to a dish and the ethanol evaporated at room temperature over 5-8 h to produce a transparent membrane. The membrane was then heated in an oven at 100 ${ }^{\circ} \mathrm{C}$ for 24 h to thermopolymerize the phenolic resins. The products were calcined at $350{ }^{\circ} \mathrm{C}$ under nitrogen for 5 h with a temperature increase rate of $1^{\circ} \mathrm{Cmin}^{-1}$.

Synthesis of $\mathbf{F D U}-\mathbf{C H}_{\mathbf{2}} \mathbf{C l}$. Under argon atmosphere, anhydrous $\mathrm{AlCl}_{3}(12 \mathrm{~g}, 90 \mathrm{mmol})$ was added in portions to a suspension of mesopolymer (3 g) with chloromethyl methyl ether (30 mL) stirred in ice-water bath, then stirred at room temperature for 24 h . A amount of cold water was slowly pour into the resulting mixture, the suspension was filtered and washed repeatedly with distilled water and acetone, then dried under vaccum.

Synthesis of $\mathbf{P S}-\mathbf{P P h}_{2} \mathbf{A u C l} .{ }^{[1]}$ To a suspension of triphenylphosphine resin $(0.34 \mathrm{~g}$, 0.34 mmol of the phosphine ligand, $100-200$ mesh $)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added a solution of $\left(\mathrm{Me}_{2} \mathrm{~S}\right) \mathrm{AuCl}(0.05 \mathrm{~g}, 0.34 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring at room temperature for 6 h , the precipitate was filtered off, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and dried under vacuum. The Au loadings were determined to be $16.0 \mathrm{wt} \%$ (ICP).

Synthesis of $\mathbf{S B A}_{\mathbf{- P P h}}^{\mathbf{2}} \mathbf{A u C l} .2 .0 \mathrm{~g}$ of Pluronic P123 was dissolved in 15 g of water and 60 g of 2 M HCl solution with stirring at $35^{\circ} \mathrm{C}$. Then 4.25 g of TEOS was added into that solution with stirring at $35{ }^{\circ} \mathrm{C}$ for 20 h . The mixture was aged at $80^{\circ} \mathrm{C}$ overnight without stirring. The solid product washed by ethanol, and dried at $80^{\circ} \mathrm{C}$. Calcination was carried out by slowly increasing temperature from room temperature to $500^{\circ} \mathrm{C}$ in 8 h and heating at $500^{\circ} \mathrm{C}$ for 6 h . SBA- 15 was obtained. ${ }^{[2]}$

Diphenyl[3-(triethoxysilyl)propyl]phosphine ($0.39 \mathrm{~g}, 1.0 \mathrm{mmol}$) was added to the suspension of SBA-15 (2 g) in toluene (100 mL) and refluxed for 24 h . The mixture was filtered and the precipitate washed by water and ethanol, dried under vacuum at $60^{\circ} \mathrm{C}$. chloro(dimethylsulfide)gold(I) $(0.29 \mathrm{~g} \mathrm{1mmol})$ was added to the suspension of above product in toluene $(50 \mathrm{~mL})$, stirring at r.t. over night. The mixture was filtered and washed by ethanol, dried under vacuum at $60{ }^{\circ} \mathrm{C}$ and $\mathrm{SBA}-\mathrm{PPh}_{2} \mathrm{AuCl}$ was obtained. ${ }^{[3]}$ The Au loadings were determined to be $6.17 \mathrm{wt} \%$ (ICP).

Characterization of the FDU-type catalysts.

Fig S1. The XRD pattern of catalysts 3a-3c

Fig S2.The Nitrogen adsorption-desorption isothermsof catalysts 3a-3c

Fig S3. FT-IR spectra of catalysts 3b-3d

Fig S4. EDS spectra of catalyst a)FDU, b)FDU-Cl, c)FDU-(p-CF $\left.\mathbf{F}_{3} \mathrm{Ph}\right)_{2} \mathrm{P}$ and d)3d

Fig S5. ${ }^{13}$ C MAS NMR spectra of a) FDU-15 and b) $\mathbf{2 d}$

Fig S6. Au 4f XP spectra of sample 3d before and after 12 runs.

Fig S7. XRD of sample 3d before and after 12 runs.

Fig S8. BET of sample $\mathbf{3 d}$ before and after 12 runs.

2. Synthesis of a series of 5-Hydroxy-1-substituted phenyl-2-pentyn-1-one 7a-71

7a was prepared according to previously reported procedures ${ }^{[4]}$. And the substituted 7b-7l was synthesized by the similar methods. To a solution of 3-butyn-1-ol $(0.38 \mathrm{~mL}$, $5.0 \mathrm{mmol})$ in THF (15 mL) was added $\mathrm{EtMgBr}(1.0 \mathrm{M}$ in THF; $11 \mathrm{~mL}, 11 \mathrm{mmol})$ at 0 ${ }^{\circ} \mathrm{C}$ under argon atmosphere, and the reaction was refluxed for 2.5 h . After cooling to $78^{\circ} \mathrm{C}$, a series solution of substituted benzaldehyde (5.0 mmol) in THF (1.5 mL) was added. The mixture was allowed to warm to room temperature, stirred overnight, quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The organic materials were extracted with EtOAc, and the combined organic extracts were washed with brine, dried over MgSO_{4}, and evaporated in vacuo. The residue was purified by flash column chromatography and directed used for the next reaction.

3. ${ }^{1} \mathbf{H} /{ }^{13} \mathbf{C}$ NMR and HR-MS Data for substrates

(E)-N-(1, 3-diphenylallyl)-4-methylbenzenesulfonamide (6a) ${ }^{[5]}$

${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $\left.d_{6}\right) \delta 8.35(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.31-7.13(\mathrm{~m}, 12 \mathrm{H}), 6.25-6.18(\mathrm{~m}, 1 \mathrm{H}), 6.06(\mathrm{dd}, J=16.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.01-$ 4.97 (m, 1H), 2.24 (s, 3H).

(E)-N-(1, 3-diphenylallyl)-N, 4-dimethylbenzenesulfonamide (6b) ${ }^{[5]}$

${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 7.71$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.40-7.35$ (m, 2H), 7.35 $-7.22(\mathrm{~m}, 10 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{dd}, J=5.0,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.64 (s, 3H), 2.27 (s, 3H).
(E)-N-(1, 3-diphenylallyl)-4-methoxybenzenesulfonamide (6c) ${ }^{[5]}$

${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 8.28$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.68-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.33$ - $7.14(\mathrm{~m}, 10 \mathrm{H}), 6.95-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.23(\mathrm{dd}, J=16.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=$ $16.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$.
(E)-N-(1, 3-diphenylallyl)-4-nitrobenzenesulfonamide (6d) ${ }^{[5]}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 8.84(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.22-8.17(\mathrm{~m}, 2 \mathrm{H}), 7.96$ $-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.14(\mathrm{~m}, 10 \mathrm{H}), 6.29(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{dd}, J=16.0$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$.

(E)- N-(1, 3-diphenylallyl) methanesulfonamide (6e) ${ }^{[5]}$

${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 7.97$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.49-7.21$ (m, 10H), 6.62 (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{dd}, J=16.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~s}$, 3H).

Benzyl-(E)-(1, 3-diphenylallyl) carbamate (6f) ${ }^{[5]}$

${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 8.14$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.54-7.06$ (m, 15H), 6.54 $(\mathrm{d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{dd}, J=16.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-$ 4.98 (m, 2H).
(E)-4-chloro- N-(1, 3-diphenylallyl) aniline (6 g$)^{[5]}$

${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 7.47-7.18(\mathrm{~m}, 10 \mathrm{H}), 7.04(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.64$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{dd}, J=16.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.43$ (dd, $J=16.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$.

(E)-N-(1, 3-diphenylallyl)-4-nitrobenzenesulfonamide (6h) ${ }^{[5]}$

${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 7.98(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.51-7.20(\mathrm{~m}, 10 \mathrm{H}), 6.75(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J$ $=16.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$.

(E)-N-(but-2-en-1-yl)-4-methylbenzenesulfonamide (6i) ${ }^{[5]}$

${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.74$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.31 (d, $J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 5.61-5.53(\mathrm{~m}, 1 \mathrm{H}), 5.37-5.30(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{~s}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.43(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.59(\mathrm{~m}, 3 \mathrm{H})$.

N-(but-3-en-2-yl)-4-methylbenzenesulfonamide (6i`) ${ }^{[5]}$

${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.37(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.68-5.54(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{dt}, J=17.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.87$ (dt, $J=10.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.66(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.

(E)-N-(but-2-en-1-yl)-N, 4-dimethylbenzenesulfonamide ($6 \mathbf{j}$) ${ }^{[5]}$

$E: Z=17: 2$

${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 7.66(\mathrm{~d}, ~ J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 5.66$ $-5.58(\mathrm{~m}, 1 \mathrm{H}), 5.34-5.27(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}$, $3 \mathrm{H}), 1.63$ (dd, $J=6.5,1.5 \mathrm{~Hz}, 3 \mathrm{H})$.
[Distinctive signals for the (E)-isomer $83.62(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.59-1.56(\mathrm{~m}, 3 \mathrm{H})$.]

N-(but-3-en-2-yl)-N, 4-dimethylbenzenesulfonamide (6j’) ${ }^{[6]}$

${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $5.65-5.53(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.10(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{dt}, J=9.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.47$ $(\mathrm{m}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.

(E)-4-methyl- N-(penta-2, 4-dien-1-yl)benzenesulfonamide (6k) ${ }^{[5]}$

${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 7.71(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.25(\mathrm{dt}, J=17.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.14-6.06(\mathrm{~m}, 1 \mathrm{H}), 5.56$ (dt, $J=15.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.14$ (dd, $J=17.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dd}, J=10.0,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.45-3.40(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H})$.

(E)-N, 4-dimethyl- N-(penta-2, 4-dien-1-yl)benzenesulfonamide (61) ${ }^{[7]}$

${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 7.68(\mathrm{~d}, ~ J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.36$ (m, 2H), 5.73 $-5.62(\mathrm{~m}, 2 \mathrm{H}), 5.22-5.08(\mathrm{~m}, 4 \mathrm{H}), 4.95-4.90(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$.
N-(cyclohex-2-en-1-yl)-4-methylbenzenesulfonamide (6m) ${ }^{[5]}$

${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d ${ }_{6}$) $\delta 7.79-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.30(\mathrm{~m}, 2 \mathrm{H}), 5.73-$ $5.62(\mathrm{~m}, 1 \mathrm{H}), 5.30-5.20(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.56(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.78(\mathrm{~m}$, $2 \mathrm{H}), 1.64-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.31(\mathrm{~m}, 2 \mathrm{H})$.
N-(cyclohex-2-en-1-yl)- N, 4-dimethylbenzenesulfonamide (6n) ${ }^{[8]}$

${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 2 \mathrm{H}), 5.85$ $-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.01-4.94(\mathrm{~m}, 1 \mathrm{H}), 4.47-4.38(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$, $1.96-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.40(\mathrm{~m}, 3 \mathrm{H})$.

6-phenyl-2, 3-dihydro-4H-pyran-4-one (8a) ${ }^{[4]}$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 2.67(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 4.67(2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 6.03$ $(1 \mathrm{H}, \mathrm{s}), 7.41-7.52(3 \mathrm{H}, \mathrm{m}), 7.74(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz})$

6-(4-methoxylphenyl)-2, 3-dihydro-4H-pyran-4-one (8b)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 2.67(2 \mathrm{H}, \mathrm{t}, J=7.25 \mathrm{~Hz}), 3.89(3 \mathrm{H}, \mathrm{s}), 4.67(2 \mathrm{H}, \mathrm{t}$, $J=7.25 \mathrm{~Hz}), 5.98(1 \mathrm{H}, \mathrm{s}), 6.96(2 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 7.72(2 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ MNR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 36.1,55.5,68.1,101.3,114.2,124.9,128.3,162.8,170.6,192.6$. HRMS (EI): m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3}:$ 204.0786. Found: 204.0788 .

6-(3-methoxyl-Phenyl)-2, 3-dihydro-4H-pyran-4-one (8c)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 2.68(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 3.87(3 \mathrm{H}, \mathrm{s}), 4.68(2 \mathrm{H}, \mathrm{t}, J=6.7$ $\mathrm{Hz}), 6.03(1 \mathrm{H}, \mathrm{s}), 7.01-7.08(1 \mathrm{H}, \mathrm{m}), 7.26-7.28(1 \mathrm{H}, \mathrm{m}), \delta 7.32-7.39(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ $\operatorname{MNR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 36,55.4,68.3,102.7,111.6,117.7,118.9,129.7,134.1$, 159.8, 170.3, 192.7. HRMS (EI): m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3}:$ 204.0786. Found: 204.0783.

6-(2-meoxthyl-Phenyl)-2, 3-dihydro-4H-pyran-4-one (8d)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 2.68(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 3.91(3 \mathrm{H}, \mathrm{s}), 4.65(2 \mathrm{H}, \mathrm{t}, J=6.7$ $\mathrm{Hz}), 6.33(1 \mathrm{H}, \mathrm{s}), 7.02(2 \mathrm{H}, \mathrm{m}), 7.72(1 \mathrm{H}, \mathrm{m}), 7.45(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ MNR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 36,55.5,68.1,107.9,111.6,120.7,129.4,132.4,158.2,168.2,193.5$. HRMS (EI): m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3}:$ 204.0786. Found: 204.0788 .

6-(4-trifluoromethyPhenyl)-2, 3-dihydro-4H-pyran-4-one (8e)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 2.72(2 \mathrm{H}, \mathrm{t}, J=6.75 \mathrm{~Hz}), 4.72(2 \mathrm{H}, \mathrm{t}, J=6.75 \mathrm{~Hz}), 6.08$ $(1 \mathrm{H}, \mathrm{s}), 7.72(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.86(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{MNR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 36.1,68.5,103.6,125.7,126.8,136,168.6,192.4$. HRMS (EI): m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{~F}: 242.0555$. Found: 242.0556 .

6-(4-chlorine-Phenyl)-2, 3-dihydro-4H-pyran-4-one (8f)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 2.69(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 4.69(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 6.02$ $(1 \mathrm{H}, \mathrm{s}), 7.43(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.69(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ MNR (125 MHz, CDCl ${ }_{3}$) $\delta: 36,68.3,102.7,127.8,129,131.1,137.9,169.5,192.4$. HRMS (EI): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{Cl}$: 208.0291 . Found: 208.0290.

6-(3-chlorine-Phenyl)-2, 3-dihydro-4H-pyran-4-one (8g)

${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 2.69(2 \mathrm{H}, \mathrm{t}, J=6.85 \mathrm{~Hz}), 4.69(2 \mathrm{H}, \mathrm{t}, J=6.85 \mathrm{~Hz}), 6.02$ $(1 \mathrm{H}, \mathrm{s}), 7.46-7.51(1 \mathrm{H}, \mathrm{m}), 7.67-7.64(1 \mathrm{H}, \mathrm{m}), 7.72-7.78(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ MNR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 36,68.4,103.1,124.5,126.6,129.9,131.5,134.9,168.8,192.4$. HRMS (EI): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{Cl}$: 208.0291. Found: 208.0292.

6-(2-chlorine-Phenyl)-2, 3-dihydro-4H-pyran-4-one (8h)

${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 2.71(2 \mathrm{H}, \mathrm{t}, J=6.85 \mathrm{~Hz}), 4.70(2 \mathrm{H}, \mathrm{t}, J=6.85 \mathrm{~Hz}), 5.79$ $(1 \mathrm{H}, \mathrm{s}), 7.31-7.43(2 \mathrm{H}, \mathrm{m}), 7.44-7.51(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ MNR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 36$, $68.6,107.9,126.8,130.2,131.6,133,170.5,192.3$. HRMS (EI): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{Cl}$: 208.0291 . Found: 208.0292.

6-(4-cyano-Phenyl)-2, 3-dihydro-4H-pyran-4-one (8i)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 2.72(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 4.72(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 6.08$ $(1 \mathrm{H}, \mathrm{s}), 7.75(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.86(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ MNR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 36.1,68.6,104.2,115,118.1,126.9,132.4,136.9,168,192.1$. HRMS (EI): m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{~N}$: 199.0633. Found: 199.0635.

6-(4-nitro-Phenyl)-2, 3-dihydro-4H-pyran-4-one (8j)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 2.73(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 4.75(2 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}), 6.12$ $(1 \mathrm{H}, \mathrm{s}), 7.89-7.96(2 \mathrm{H}, \mathrm{m}, J=8.5 \mathrm{~Hz}), 8.28-8.34(2 \mathrm{H}, \mathrm{m}, J=8.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ MNR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 36,68.7,104.6,123.8,127.3,138.6,149.5,167.5,192.2$. HRMS (EI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{O}_{4} \mathrm{~N}$: 219.0532. Found: 219.0529.

6-(4-bromine-Phenyl)-2, 3-dihydro-4H-pyran-4-one (8k)

${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 2.68(2 \mathrm{H}, \mathrm{t}, J=6.85 \mathrm{~Hz}), 4.69(2 \mathrm{H}, \mathrm{t}, J=6.85 \mathrm{~Hz}), 6.02$ $(1 \mathrm{H}, \mathrm{s}), 7.65-7.54(4 \mathrm{H}, \mathrm{m}, J=8.5 \mathrm{~Hz}), 8.28-8.34(2 \mathrm{H}, \mathrm{m}, J=8.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ MNR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 36,68.3,102.6,126.3,127.9,131.6,131.9,169.3,192.4$. HRMS (EI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{Br}$: 251.9786. Found: 251.9788 .

4-Methyl-2-(2-phenylethyl) furan (10) ${ }^{[9]}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 1.87(3 \mathrm{H}, \mathrm{s}), 2.75-2.87(4 \mathrm{H}, \mathrm{m}), 5.75(1 \mathrm{H}, \mathrm{s}), 6.98(1 \mathrm{H}$, s), 7.07-7.20 (5H, m); ${ }^{13} \mathrm{C} \operatorname{MNR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 9.85,30.25,34.54,108.09$, $120.55,126.12,128.40,128.42,137.49,141.41,155.50$.

References

[1] Masahiro Egi, Kenji Azechi, and Shuji Akai, Adv. Synth. Catal., 2011, 353, 287290.
[2] Dongyuan Zhao, Qisheng Huo, Jianglin Feng, Bradley F. Chmelka and Galen D. Stucky, J. Am. Chem. Soc. 1998, 120, 6024-6036.
[3] Xiujuan Feng, Mei Yan, Tao Zhang, Ying Liu and Ming Bao, Xiujuan Feng, Green Chem., 2010, 12, 1758-1766.
[4] M. Egi, K. Azechi, M. Saneto, K. Shimizu and S. Akai, J. Org. Chem., 2010, 75, 2123-2126.
[5] X. Giner, P. Trillo and C. Nájera, J. Organometallic. Chem., 2011, 696, 357-361.
[6] Kunakova, R. V.; Sirazova, M. M.; Dzhemilev, U. M., Zhurnal Organicheskoi Khimii, 1987, 23, 826-833.
[7] H. Qin, N. Yamagiwa, S. Matsunaga, M. Shibasaki, Angew. Chem. Int. Ed., 2007, 46, 409-413.
[8] S. Haubenreisser, M. Niggemann, Adv. Synth. Catal., 2011, 353, 469-474.
[9] M. Egi, K. Azechi and S. Akai, Org. Lett., 2009, 11, 5002-5005.

