Supporting Information

Title: Petroleomics via Orbitrap mass spectrometry with resolving power above 1,000,000

Authors: Eduardo M. Schmidt^{†, ‡}, Marcos A. Pudenzi[†], Jandyson M. Santos[†], Celio F.
F. Angolini[†], Rosana C. L. Pereira[£], Ygor Rocha[£], Eduard Denisov[¥], Eugen Damoc[¥],
Alexander Makarov^{¥*}, Marcos N. Eberlin^{*,†}

[†] ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of

Campinas, UNICAMP, 13083-725, Campinas, SP, Brazil

[‡] Nova Analítica Importações e Exportações LTDA, 04131-000, São Paulo, SP, Brazil.

[£] Petróleo Brasileiro S/A, PETROBRAS, CENPES, 21941-915, Rio de Janeiro, RJ, Brazil

[¥]Thermo Fisher Scientific, Hanna-Kunath-Strasse 11, 28199, Bremen, Germany.

Corresponding Authors: *eberlin@iqm.unicamp.br (M.N.E);

alexander.makarov@thermofisher.com (A.M).

Figure S1: The standard Orbitrap geometry (left) and that of a compact high-field Orbitrap (right) analyzer. The outer electrodes are separated by a quartz ring and used for detection and therefore are maintained at the virtual ground of the preamplifier, whereas the central electrode is used for trapping at a voltage – Ur (Ur > 0 for positive ions). Courtesy of \bigcirc Thermo Fisher Scientific (Bremen) GmbH.

Molecular	Theorical	Mass	Experimental	Absolute	Error	Resolving
Formula	Mass	Analyzer	Mass	intensity	(ppm)	Power
C ₃₈ H ₃₄ N	504.26858	Std. Orbitrap	Х	Х	Х	Х
		FT-ICR	504.26790	2346.4	-1.342	252,100
		MegaOrbitrap	Х	Х	Х	Х
C ₃₆ H ₄₂ NO	504.32609	Std. Orbitrap	504.32721	4294	2.218	73,900
		FT-ICR	504.32558	4342.7	-1.014	234,700
		MegaOrbitrap	504.32635	15873.7	0.513	665,004
C H NOS	504.32946	Std. Orbitrap	Х	Х	Х	Х
C ₃₃ Π ₄₆ NOS		FT-ICR	Х	Х	Х	Х
_		MegaOrbitrap	504.32986	2961.1	0.797	630,456
C ₂₇ H ₅₄ NOS ₃	504.33620	Std. Orbitrap	Х	Х	Х	Х
		FT-ICR	Х	Х	Х	Х
		MegaOrbitrap	504.33557	9152.9	-1.257	621,404
	504.34541	Std. Orbitrap	504.34509	2205.9	-0.633	75,000
$\mathbf{C_{31}H_{52}OS_2}$		FT-ICR	504.34489	2260.7	-1.029	248,400
		MegaOrbitrap	Х	Х	Х	Х
C ₃₇ H ₄₆ N	504.36248	Std. Orbitrap	504.36185	33785	-1.243	91,502
		FT-ICR	504.36186	61057.8	-1.223	266,600
		MegaOrbitrap	504.36279	106921.5	0.621	634,604
C ₃₄ H ₅₀ NS	504.36585	Std. Orbitrap	Х	Х	X	Х
		FT-ICR	504.36503	5488.8	-1.621	273,600
		MegaOrbitrap	504.36603	14255.1	0.361	664,404

Table S1: Molecular formula assigned to ions detected and separated by the standard Orbitrap, the 7.2 T FT-ICR and the MegaOrbitrap analyzers in the m/z 504.26 – 504.46 range.

	504.38361	Std. Orbitrap	504.38235	5622.7	-2.491	86,602
$\mathrm{C}_{34}\mathrm{H}_{50}\mathrm{NO}_{2}$		FT-ICR	504.38284	2683	-1.519	220,900
		MegaOrbitrap	504.38394	21729.2	0.662	668,904
C ₃₅ H ₅₄ NO	504.41999	Std. Orbitrap	504.41995	4192.1	-0.083	77,400
		FT-ICR	504.41939	3695.9	-1.193	229,100
		MegaOrbitrap	504.42035	13535.1	0.710	692,604
C ₃₁ H ₅₆ N ₂ O ₃	504.42855	Std. Orbitrap	Х	Х	Х	Х
		FT-ICR	Х	Х	Х	Х
		MegaOrbitrap	504.42947	10397.3	1.834	654,904
C ₃₀ H ₆₄ OS ₂	504.43931	Std. Orbitrap	Х	Х	Х	Х
		FT-ICR	504.43856	1063.5	-1.486	284,300
		MegaOrbitrap	504.43976	7245.1	0.893	670,604
		Std. Orbitrap	Х	Х	Х	Х
$C_{32}H_{60}N_2S$	504.44717	FT-ICR	504.44688	12948.9	-0.579	251,500
		MegaOrbitrap	504.44775	28837.3	1.146	665,604
C ₃₆ H ₅₈ N	504.45637	Std. Orbitrap	504.45572	172385.9	-1.303	96,506
		FT-ICR	504.45573	199385.4	-1.283	268,401
		MegaOrbitrap	504.45670	479846.7	0.640	695,501

X= Not detected in this condition

m/z

Figure S2: Major figures of merit used in mass spectrometry and their correlation with m/z values and peak intensity.

Signal to Noise *

Figure S3*: Signal-to-Noise ratio obtained from the analysis of a typical crude oil sample in Standard Orbitrap, FT-ICR, and MegaOrbitrap.

Dynamic Range

Figure S4*: Calculated Dynamic Range in the analysis of a typical crude oil sample in Standard Orbitrap, FT-ICR and MegaOrbitrap.

Spectral Error

Figure S5*: Spectral Error (SE) for C₄₀H₆₆N and its isotope C₃₉¹³CH₆₆N obtained from the analysis of a typical crude oil sample by Standard Orbitrap, FT-ICR, and MegaOrbitrap.

Table S2*: Mean spectral error (SE) for all molecular formula assigned obtained from the analysis of a typical crude oil sample by using the Standard Orbitrap, FT-ICR, and MegaOrbitrap. The total number of molecular formulas and attributed isotopologues is also shown.

	Mear	Molecular		
Mass Analyzer	M+1	M+2	Total	formula (attributed isotopologues)
Standard Orbitrap	12 ± 10	29 ± 8	13 ± 10	537 (512)
FT-ICR	14 ± 10	18 ± 10	15 ± 10	2376 (1661)
MegaOrbitrap	14 ± 11	16 ± 11	15 ± 11	1754 (1320)

Figure S6*: Transients obtained for each equipment organized in the same time scale in seconds. They refer to (a) Standard Orbitrap (b) FT-ICR and (c) MegaOrbitrap

Mass Accuracy

Figure S7*: Spectra in the same mass range showing the differences in mass accuracy and resolution between the equipments studied: (a) Standard Orbitrap (b) FT-ICR and (c) MegaOrbitrap

Table S3*: Minimum resolving power required for resolve compounds differing by C_3 and SH_4 at different m/z

m/z	Minimum		
	Resolving Power		
200	117647		
400	235294		
600	352941		
800	470588		