Understanding viscosity reduction of a long-tail sulfobetaine viscoelastic surfactant by organic compounds

Lionel Talley Fogang¹, Abdullah S. Sultan^{1,2*}, Muhammad Shahzad Kamal²

¹Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, 31261

Dhahran, Saudi Arabia

²Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals,

31261 Dhahran, Saudi Arabia

*Corresponding Author: Abdullah S. Sultan

Email:

sultanas@kfupm.edu.sa

Supporting Information for Publication

 Table S 1. Estimated values of crossover frequency and relaxation time of the pure surfactant solution

Temperature (°C)	η ₀ (Pa.s)	G ₀ (Pa)	ω _c (rad/s)	$ au_{\mathrm{R}}\left(\mathbf{s} ight)$	ξ (nm)
30	186.09	4.59	2.47×10 ⁻²	40.5	97.0021
60	138.07	4.05	2.93×10 ⁻²	34.1	104.375

Table S 2. Estimated differences in zero-shear viscosities between the surfactant solutions with

 the oils and the pure surfactant solutions at test temperatures

Concentration	n-decane		Crude oil		EVOO		Octa- decane
(WL 70)	30°C	60°C	30°C	60°C	30°C	60°C	60°C
0.9	6.72×10^{2}	5.50×10 ⁴	1.43	2.08×10^{1}	1.17	9.65×10 ¹	1.39×10 ¹
2	1.58×10 ⁵	2.06×10^{5}	2.12	5.62×10 ³	2.33	3.33×10 ³	2.26
3	1.63×10 ⁵	2.05×10 ⁵	2.62	1.92×10^{4}	9.57	6.59×10 ³	8.13

Figure S 1. Zero-shear viscosity of surfactant solution with time

Figure S 2. Cryo-TEM image of 3.96 wt % surfactant solution at 30°C diluted in ethyl acetate.

The black curves represent the edges of the micelles

Figure S 3. Cryo-TEM image of 3.96 wt % surfactant solution at 30°C diluted in ethyl acetate.

The black curves represent the edges of the micelles

Figure S 4. Estimated zero-shear viscosity of 3.96 wt % surfactant solution with different EVOO concentrations

Figure S 5. Viscosity vs shear rate of 3.96 wt % surfactant solution with different concentrations of n-decane at 30°C

Figure S 6. Viscosity vs shear rate of 3.96 wt % surfactant solution with different concentrations of crude oil at 30°C

Figure S 7. Viscosity vs shear rate of 3.96 wt % surfactant solution with different concentrations of EVOO at 30°C

Figure S 8. Viscosity vs shear rate of 3.96 wt % surfactant solution with different concentrations of n-decane at 60°C

Figure S 9. Viscosity vs shear rate of 3.96 wt % surfactant solution with different concentrations of crude oil at 60°C

Figure S 10. Viscosity vs shear rate of 3.96 wt % surfactant solution with different concentrations of EVOO at 60°C

Figure S 11. Shear stress vs shear rate of 3.96 wt % surfactant solution with different concentrations of n-decane at 30°C

Figure S 12. Shear stress vs shear rate of 3.96 wt % surfactant solution with different concentrations of crude oil at 30°C

Figure S 13. Shear stress vs shear rate of 3.96 wt % surfactant solution with different concentrations of EVOO at 30°C

Figure S 14. Shear stress vs shear rate of 3.96 wt % surfactant solution with different concentrations of n-decane at 60°C

Figure S 15. Shear stress vs shear rate of 3.96 wt % surfactant solution with different concentrations of crude oil at 60°C

Figure S 16. Shear stress vs shear rate of 3.96 wt % surfactant solution with different concentrations of EVOO at 60°C

Figure S 17. Viscosity and stress vs shear rate of 3.96 wt % surfactant solution with 0.25 wt% crude oil at 30°C.

Figure S 18. Viscosity and stress vs shear rate of 3.96 wt % surfactant solution with 0.25 wt% EVOO at 30°C

Figure S 19. Storage modulus (filled symbols) and loss modulus (open symbols) of 3.96 wt % surfactant solution with different concentrations of n-decane at 30°C

Figure S 20. Storage modulus (filled symbols) and loss modulus (open symbols) of 3.96 wt % surfactant solution with different concentrations of crude oil at 30°C

Figure S 21. Storage modulus (filled symbols) and loss modulus (open symbols) of 3.96 wt % surfactant solution with different concentrations of EVOO at 30°C

Figure S 22. Storage modulus (filled symbols) and loss modulus (open symbols) of 3.96 wt % surfactant solution with different concentrations of n-decane at 60°C

Figure S 23. Storage modulus (filled symbols) and loss modulus (open symbols) of 3.96 wt % surfactant solution with different concentrations of crude oil at 60°C

Figure S 24. Storage modulus (filled symbols) and loss modulus (open symbols) of 3.96 wt % surfactant solution with different concentrations of EVOO at 60°C

Figure S 25. Cryo-TEM image of 3.96 wt % surfactant solution with 3 wt % EVOO at 60°C. The black lines represent the micelle edges.

Figure S 26. Viscosity vs shear rate of 3.96 wt % surfactant solution with different concentrations of PGA at 30°C

Figure S 27. Viscosity vs shear rate of 3.96 wt % surfactant solution with different concentrations of PGA at 60°C

Figure S 28. Shear stress vs shear rate of 3.96 wt % surfactant solution with different concentrations of PGA at 30°C

Figure S 29. Shear stress vs shear rate of 3.96 wt % surfactant solution with different concentrations of PGA at 60°C

Figure S 30. Storage modulus (filled symbols) and loss modulus (open symbols) of 3.96 wt % surfactant with different concentrations of PGA at 30° C

Figure S 31. Storage modulus (filled symbols) and loss modulus (open symbols) of 3.96 wt % surfactant with different concentrations of PGA at 60°C