Electric Supplenmentary Material

A mixed-solvent Liquid exfoliated MoS_2 nanoparticles as peroxidase mimetics for colorimetric detection of H_2O_2 and

glucose

Yuehua Zhao^{a,b,#}, Yu Huang^{a,#,*}, Jiangling Wu^c, Xiaoli Zhan^d, Yuanyang Xie^{a,b}, Dongyun Tang^a, Haiyan Cao^{e,*}, Wen Yun^{f,*}

^a Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China

^b University of Chinese Academy of Science, Beijing, 100049, China

^c University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China

^d Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China

^e School of Chemistry and Chemical Engineering, Yangtze Normal University, 408100, Chongqing, China

^f Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China

These authors contributed equally to this work

*Corresponding author email address: huangyu@cigit.ac.cn (Yu Huang), 513923170@qq.com (Haiyan Cao),yunwenyunwen@126.com (Wen Yun)

Fig.S1 (a) The time-dependent absorption changes at 656 nm in the presence of different concentrations of MoS_2 NPs in HAc-NaAc buffer (pH 4.0) at 40°C with 0.8 mM TMB and 0.04 mM H₂O₂ for 15 min .

Effect of temperature (Fig.S1(b)) and pH (Fig.S1(c)) on the catalytic activity of MoS₂ NPs.

Reaction condition of (b) : $300 \ \mu L \ MoS_2 \ NPs \ (100 \ \mu g \ mL^{-1}) + 300 \ \mu L \ TMB(8 \ mM) + 300 \ \mu L \ H_2O_2 \ (0.4 \ mM) + 2100 \ \mu L \ HAc-NaAc \ buffer \ (pH \ 4.0).$

Reaction condition of (c) : 300μ L MoS₂ NPs (100 μ g mL⁻¹) + 300 μ L TMB(8 mM)+ 300 μ L H₂O₂ (0.4 mM) + 2100 μ L HAc-NaAc buffer (different pH values).

The error bars represent the standard deviation of three measurements.

Fig.S1(d) The effect of reaction time on the catalytic activity of MoS_2 NPs. The experiment was carried out using 10ug mL⁻¹ MoS₂ NPs in a reaction volume of 3 mL, in HAc-NaAc buffer (pH 3.5) with 0.8 mM TMB and 0.04 mM H₂O₂ for 20 min at 30°C.

Fig.S2 Steady-state kinetic assay of HRP. The velocity (*v*) of the reaction was measured using HRP (5 μ g L⁻¹) in 3 mL of acetate buffer solution (0.2M, pH = 3.5) at 30 °C. (a) The concentration of TMB was 0.8mM and the H₂O₂ concentration was varied. (b) The concentration of H₂O₂ was 0.8mMand the TMB concentration was varied.

Table.S1 Comparison of the kinetic parameters of MoS_2 NPs and HRP. K_m is the Michaelies constant, V_{max} is the maximal reaction velocity.

Catalyst	Substrate	K _m (mM)	V _{max} (10 ⁻⁸ M s ⁻¹)
MoS ₂ NPs	H_2O_2	0.1355	28.4
MoS ₂ NPs	TMB	2.5324	58.9
HRP	H_2O_2	2.5547	85.5
HRP	TMB	0.2934	50.1

Table.S2 Comparison of various colorimetric methods for detection of H₂O₂.

Materials	LOD(µM)	Linear range(M)	Reference
Fe ₃ O ₄ MNPs	3	5×10 ⁻⁶ -1×10 ⁻⁴	1
Positively charged AuNPs	0.5	2×10 ⁻⁶ -2×10 ⁻⁴	2
SDS- MoS ₂ NPs	0.32	2×10 ⁻⁶ -1×10 ⁻⁴	3
MoS ₂ /PPy Nanocomposite	45	50×10 ⁻⁶ -2×10 ⁻³	4
MoS ₂ nanosheets	1.5	5×10 ⁻⁶ -1×10 ⁻⁴	5
MoS ₂ NPs	1.25	3×10 ⁻⁶ -1.2×10 ⁻⁴	This work

Materials	LOD(µM)	Linear range(M)	Reference
Fe ₃ O ₄ MNPs	30	50×10 ⁻⁶ -10×10 ⁻⁴	1
Positively charged AuNPs	4	18×10 ⁻⁶ -11×10 ⁻⁴	2
SDS - MoS ₂ NPs	0.57	5×10 ⁻⁶ -5×10 ⁻⁴	3
PVP - MoS ₂ NPs	320	1000×10 ⁻⁶ -100×10 ⁻⁴	6
MoS ₂ nanosheets	1.2	5×10 ⁻⁶ -1.5×10 ⁻⁴	5
MoS ₂ NPs	7	15×10 ⁻⁶ -1.35×10 ⁻⁴	This work

Table.S3 Comparison of various colorimetric methods for detection of glucose.

Table.S4 Detection results of H_2O_2 after adding different concentrations of H_2O_2 into

	-				
Sample	Content	Added	Measured	Recovery	RSD
number	(µM)	(µM)	(µM)	(%,n=3)	(%,n=3)
1	5	5	9.83	98.3	4.8
2	5	35	38.76	96.9	6.3
3	5	75	77.21	96.5	5.6

known concentration of H₂O₂

Table.S5 Detection results of glucose after adding different concentrations of glucose

Sample	Content	Added	Measured	Recovery	RSD
number	(µM)	(µM)	(µM)	(%,n=3)	(%,n=3)
1	10	10	19.12	95.6	5.3
2	10	50	58.68	97.8	6.7
3	10	90	97.1	97.1	6.4

into known concentration of glucose

Foreign substance	Concentration	Change in absorption signal (%) ⁿ
	(mM)	
NaCl	500	+5.2
KCl	500	+4.9
NH ₄ Cl	500	+3.1
CaCl ₂	100	+3.8
MgCl ₂	100	+3.3
BaCl ₂	100	+4.4
NiCl ₂	100	+4.9
Glucose	20	-5.5
Tryptophan	5	-4.6
NaClO	0.1	+5.9

Table.S6 Influence of foreign substances on the detection of $40 \ \mu M \ H_2O_2$ using the proposed method.

ⁿThe average value of five experiments

Table.S7 Results of determination of glucose in human serum samples

	(\mathbf{a})
(n:	= 4 1
111	
•	- / -

Sample	Glucometer method	Proposed method	RSD
number	(mM)	(mM)	(%)
1	5.6	5.17 ± 0.06 ⁿ	-7.7%
2	6.4	6.03 ± 0.05 ⁿ	-5.8%
3	7.7	7.16 ± 0.05 ⁿ	-7.0%

References

- 1. H. Wei and E. Wang, Anal. Chem., 2008, 80, 2250.
- 2. Y. Jv, B. Li and R. Cao, Chem. Commun., 2010, 46, 8017.
- 3. K. Zhao, W. Gu, S. Zheng, C. Zhang and Y. Xian, *Talanta*, 2015, 141, 47.
- 4. J. Lei, X. Lu, G. Nie, Z. Jiang and C. Wang, Part. Part. Syst. Char., 2015, 32, 886.
- 5. T. Lin, L. Zhong, L. Guo, F. Fu and G. Chen, *Nanoscale*, 2014, **6**, 11856.
- 6. J. Yu, X. Ma, W. Yin and Z. Gu, *RSC Adv.*, 2016, **6**, 81174.