Cocatalyst Designing: A Binary Noble-metal-free Cocatalyst System Consisting

of ZnIn₂S₄ and In(OH)₃ for Efficient Visible-light Photocatalytic Water Splitting

Jinyan Zhao^a, Xiaoming Yan^a, Ning Zhao^b, Xiao Li^a, Bin Lu^a, Xuhong Zhang^{*,a} and Haitao Yu^{*,a}

College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang

050024, China

*To whom correspondence should be addressed. The address for corresponding author Xuhong Zhang: College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024,China Email address: xuhongshd@126.com Telephone: +86-311-8078-7400 Haitao Yu: College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024,China Email address: haitaoyu@hebtu.edu.cn Telephone: +86-311-8078-7400

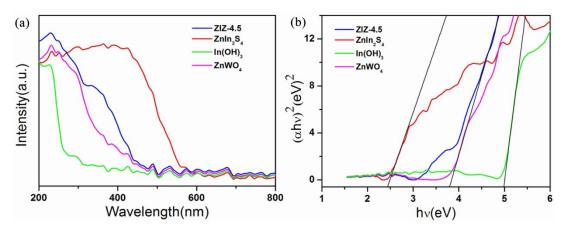


Fig. 1 (a) UV-vis diffuse reflectance spectra of ZIZ-4.5, $ZnIn_2S_4$, $In(OH)_3$ and $ZnWO_4$, (b) The band gap energy of $ZnIn_2S_4$, $In(OH)_3$ and $ZnWO_4$.

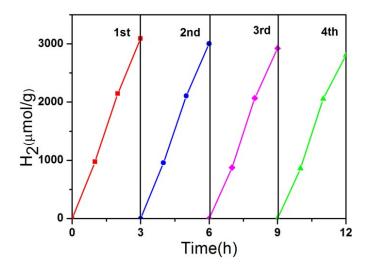


Fig. 2 Cyclic H₂ production on ZIZ-4.5 photocalyst. Reaction Conditions: photocatalyst 50 mg; light source, 300 W Xenon lamp equipped with a cut-off filter (λ > 420nm); Reactant solution: 100 mL aqueous solution containing 0.25M Na₂SO₃ and 0.35M Na₂S.

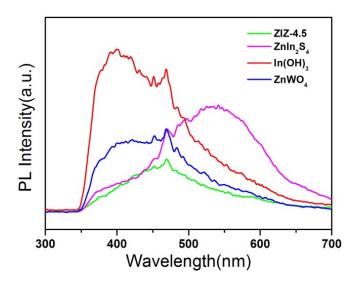


Fig. 3 Photoluminescence (PL) spectra of ZIZ-4.5, $ZnIn_2S_4$, $In(OH)_3$ and $ZnWO_4$ at room temperature ($\lambda ex = 215 \text{ nm}$).

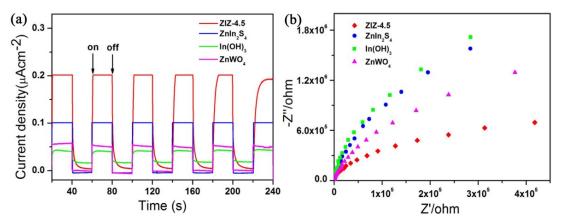


Fig. 4 (a) Transient photocurrent response and (b) the electrochemical impedance spectroscopy of ZIZ-4.5, $ZnIn_2S_4$, $In(OH)_3$ and $ZnWO_4$.