Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Surfactant-Free Microemulsion Composed of Isopentyl Acetate, *n*-Propanol, and Water

Yuan Liu^{*a*}, Jie Xu * ^{*a*}, Huanhuan Deng^{*a*}, Jiaxin Song^{*a*}, Wanguo Hou * ^{*b*}

Fig. S1. Molecular structures of (a) isopentyl acetate and (b) *n*-propanol.

Fig. S2. Scan-rate dependence of anodic peak currents in microemulsions at $f_{IA}=0.050$ with (a) $R_{P/W} = 8.0/2.0$ and (b) $R_{P/W} = 7.0/3.0$.

Fig. S3. IA dilution lines with different $R_{P/W}$ values for cyclic voltammetry, fluorescence spectroscopy, and UV-visible spectroscopy mesurements

Fig. S4. Diffusion coefficient (D_p) of K₃Fe(CN)₆, in microemulsions as a function of f_{IA} at various $R_{P/W}$. The concentration of K₃Fe(CN)₆ was 0.65 g·L⁻¹.

Fig. S5. (A, B) D_p of K₃Fe(CN)₆, (C, D) I_{393}/I_{373} of pyrene, and (E, F) λ_{max} of MO in microemulsions at (A, C, E) $R_{P/W} = 9/1$ and (B, D, F) $R_{P/W} = 8.0/2.0$ as a function of f_{IA} .

Fig. S6. (A) D_p of K₃Fe(CN)₆, (B) I_{393}/I_{373} of pyrene, and (C) λ_{max} of MO in microemulsions at $R_{P/W} = 7.0/3.0$ as a function of f_{IA} .

Fig. S7. Cryo-TEM images of samples (A) a, (B) b, (C) c, and (D) d. The samples a and b fall in the O/W subregion, and the samples c and d fall in the BC and W/O subregions, respectively, as marked in Fig. 1.