Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Title:

Stereoelectronic control of oxidation potentials of 3,7-bis(diarylamino)phenothiazines

Authors:

Ayumu Karimata,^a Shuichi Suzuki,^{ab*} Masatoshi Kozaki,^a and Keiji Okada^{a*}

Affiliation:

^aGraduate School of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan ^bGraduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.

Corresponding Author:

Keiji Okada (mail to okadak@sci.osaka-cu.ac.jp) Shuichi Suzuki (mail to suzuki-s@chem.es.osaka-u.ac.jp)

Table of Contents

ORTEP views of 1f and 1f ⁺ •GaBr ₄ ⁻ (Fig. S2)	p. S3
Absorption spectra of $1f^{+}GaBr_4^-$ and $2f^{+}PF_6^-$ (Fig. S3)	p. S4
Energy diagrams and Pictures of KS-SOMO of 1a-e⁺⁺ (Fig. S4)	p. S5
Optimized structures of 1f ⁺ and their heat of formations (Fig. S5)	p. S6
Energy diagrams and Pictures of KS-HOMO of 1a-e (Fig. S6)	p. S7
Crystallographic data (Table S1-1~4)	p. S8
¹ H and ¹³ C NMR spectra of 1a–f (Fig. S7–12)	p. S12
Cartesian coordination of optimized structure for 1a–e (Table S2-1~5)	p. S18
Cartesian coordination of optimized structure for 1a–e⁺⁺ (Table S3-1~5)	p. S23
Summaries of results of TD-DFT calculation for 1a-e ⁺⁺	p. S28
Comparison of near-IR absorption bands and dihedral angles (Table S4)	p. S33
Reference	p. S34

Fig. S1 Cyclic voltammograms of **1d** (solid line), **1e** (dashed line), and **1f** (dotted line) in dichloromethane $(2 \times 10^{-4} \text{ M})$. Only first oxidation processes of **1d** and **1e** were shown here.

Fig. S2 ORTEP views of **1f** (a) and **1f⁺•GaBr** $_{4}^{-}$ (b) (upper: side view; lower: top view). Compound **1f** has a mirror symmetry along the C–S axis of the central phenothiazine moiety. The dihedral angle of the phenoxazine moiety D defined by two benzene rings (3.2°) is slightly smaller than those of the phenoxazine moieties A (B) and C (7.9 and 8.2°, respectively). In addition, the C–O bond lengths at the phenoxazine moiety D (av. 1.38 Å) are shorter than those at the phenoxazine moieties A (B) and C (1.40–1.41 Å). These results indicate that the phenoxazine moiety D is in the radical cationic states.

Fig. S3 Absorption spectra of (a) $1f^{+}GaBr_{4}^{-}$ and (b) $2f^{+}PF_{6}^{-}$ in $CH_{2}Cl_{2}$.^{S1} The absorption around 540 nm of $1f^{+}GaBr_{4}^{-}$ was assigned to the terminal phenothiazine radical cation.

Fig. S4 Energy diagrams and pictures of KS-SOMO for optimized structure calculated by *Gaussian 09* with the UB3LYP/6-31G** level of theory.^{S2} (a) $1a^{+}$, (b) $1b^{+}$, (c) $1c^{+}$, (d) $1d^{+}$, and (e) $1e^{+}$. The SOMO orbitals of radical cations generally reflect the HOMO orbitals of neutral species. The SOMO has red colored orbitals on the sulfur and nitrogen atoms and green colored orbitals on the carbon atoms in the thiazine ring in the phenothiazine ring. Thus, the S–C and N–C bonds have anti-bonding character. Removing an electron from HOMO reduces the anti-bonding character in the S–C and N–C bonds; thus, they are shortened in the radical cation states.

Fig. S5 Optimized structures of $1f^{+}$ and their heat of formations; ^{S2} (a) X-ray-type structure (optimized from the crystal structure of $1f^{+}$) and (b) $1e^{+}$ -type structure (optimization from the structure where the central phenothiazine moiety has planar structure), showing that the optimized structure (a) has a lower energy (HF(structure b) – HF(structure a) = +5.54 kcal mol⁻¹).

Fig. S6 Energy diagrams and pictures of KS-HOMO for optimized structure calculated by *Gasussian 09* with the B3LYP/6-31G** level of theory.^{S2} (a) **1a**, (b) **1b**, (c) **1c**, (d) **1d**, and (e) **1e**.

	1a	1b'	1c
Formula	$C_{37}H_{25}N_3S$	C ₄₇ H ₃₇ N ₃ S	$C_{41}H_{29}N_3S$
Formula weight	543.68	675.89	595.76
Crystal color	colorless	yellow	yellow
morphology	block	block	block
Size / mm ³	$0.30\times0.20\times0.01$	$0.10\times0.05\times0.05$	$0.20 \times 0.15 \times 0.05$
Crystal system	monoclinic	monoclinic	moniclinic
Space group	$P2_1/c$ (No. 14)	$P2_{1}/c$ (No. 14)	$P2_1/n$ (No. 14)
<i>a</i> / Å	13.022(8)	14.182(11)	18.942(16)
<i>b</i> / Å	9.483(6)	13.573(11)	7.309(5)
<i>c</i> / Å	21.773(13)	18.170(15)	23.453(19)
lpha / degree	90	90	90
β / degree	93.312(7)	96.605(8)	111.966 (10)
γ/ degree	90	90	90
V / Å ³	2684(3)	3474(5)	3011(4)
Z value	4	4	4
<i>T /</i> K	150(2)	150(2)	150(2)
$D_{ m calc}$ / g cm ⁻³	1.345	1.292	1.314
<i>F</i> (000)	1136	1424	1248
μ / cm $^{-1}$	1.54	1.33	1.43
No. of reflections measured	26332	34899	29258
No. of unique reflections	6105	6172	6802
No. of observed reflections	6105	6172	6802
No. of variables	395	497	435
Reflection/ Parameter Ratio	15.46	12.42	15.63
R1 [I > 2.00s(I)]	0.0502	0.0549	0.0820
$R_{ m w}$	0.0704	0.1427	0.2144
Goodness-of-fit	1.341	1.313	1.839

 Table S1-1 Crystallographic data of 1a, 1b', and 1c.

	1d	1e	1f
Formula	$C_{37}H_{29}N_3S$	$C_{37}H_{25}N_3S_3\bullet C_7H_8$	$C_{37}H_{25}N_3O_2S\bullet C_4H_8O$
Formula weight	547.72	699.95	647.79
Crystal color	colorless	colorless	colorless
morphology	platelet	block	block
Size / mm ³	$0.20\times0.15\times0.01$	$0.20\times0.20\times0.15$	$0.20\times0.20\times0.15$
Crystal system	orthorhombic	triclinic	orthorhombic
Space group	Aba2 (No. 41)	<i>P</i> -1 (No. 2)	<i>Pnma</i> (No. 62)
<i>a</i> / Å	21.784(11)	10.758(6)	28.24(3)
<i>b</i> / Å	27.581(14)	12.675(7)	20.01(2)
<i>c</i> / Å	9.343(5)	14.281(8)	5.663(6)
lpha / degree	90	68.315(18)	90
β / degree	90	82.98(3)	90
γ / degree	90	75.22(3)	90
V / Å ³	5613(5)	1748.7(17)	3201(6)
Z value	8	2	4
<i>T /</i> K	150(2)	150(2)	150(2)
$D_{ m calc}$ / g cm $^{-3}$	1.296	1.329	1.327
<i>F</i> (000)	2304	732	1238
μ / cm ⁻¹	1.47	2.49	1.47
No. of reflections measured	28364	17642	30996
No. of unique reflections	6315	7821	3762
No. of observed reflections	6315	7821	3762
No. of variables	399	484	253
Reflection/	15.92	16.16	14.07
Parameter Ratio	15.83	10.10	14.87
R1 [I > 2.00s(I)]	0.0538	0.0481	0.0937
$R_{ m w}$	0.0646	0.0678	0.2277
Goodness-of-fit	1.080	1.319	1.724

Table S1-2 Crystallographic data of 1d, 1e, and 1f.

	1a ^{**} •SbF, ⁻	1b**•SbF_	1c**•GaBr. ⁻
	C_{37} H ₂₅ N ₃ S•SbF	CarHarNaS	C H N SeCoBr
Formula	•CH ₃ CN•(C ₆ H ₆) _{0.5}	•SbF ₆ •(C ₆ H ₅ Cl) _{0.75}	$-C_{41}H_{29}W_{3}S-GaBI_{4}$ $-C_{6}H_{5}Cl$
Formula weight	863.58	916.44	1097.65
Crystal color	green	green	green
morphology	block	block	block
Size / mm ³	$0.20\times0.05\times0.05$	$0.15\times0.05\times0.02$	$0.20\times0.10\times0.02$
Crystal system	monoclinic	moniclinic	moniclinic
Space group	$P2_1/n$ (No. 14)	$C2/_{C}$ (No. 15)	$P2_1/c$ (No. 14)
<i>a</i> / Å	13.5112(9)	43.28(2)	18.327(10)
<i>b</i> / Å	7.4584(4)	12.154(5)	10.704(6)
<i>c</i> / Å	35.454(3)	33.650(5)	23.653(13)
lpha / degree	90	90	90
β / degree	92.068(4)	115.783(8)	92.738(5)
γ / degree	90	90	90
V / Å ³	3570(4)	15937(12)	4635(4)
Z value	4	16	4
T / K	150(2)	150(2)	150(2)
$D_{ m calc}$ / g cm $^{-3}$	1.599	1.528	1.537
<i>F</i> (000)	1728	7400	2164
μ / cm ⁻¹	9.00	8.59	41.90
No. of reflections measured	34157	79297	46426
No. of unique reflections	8090	18096	10558
No. of observed reflections	8090	18096	10558
No. of variables	518	1109	548
Reflection/ Parameter Ratio	15.62	16.29	19.26
R1 [I > 2.00s(I)]	0.0370	0.0754	0.0960
$R_{ m w}$	0.1243	0.1902	0.1555
Goodness-of-fit	0.894	1.669	2.710

 $Table \ S1-3 \ {\rm Crystallographic} \ data \ of \ 1a^{\text{\tiny +}\bullet}SbF_6^{-}, \ 1b^{\text{\tiny +}\bullet}SbF_6^{-}, \ and \ 1c^{\text{\tiny +}\bullet}GaBr_4^{-}.$

	1d**•SbF ₆ -	1e ^{•+} •SbF ₆	1f⁺•GaBr₄ ⁻
Formula	$C_{37}H_{29}N_3S \bullet SbF_6$	$C_{37}H_{25}N_3S_3{\bullet}SbF_6$	$C_{37}H_{25}N_3O_2S$
Formula	• $(CH_2Cl_2)_{0.25}$	$\bullet C_7 H_8$	•GaBr ₄
Formula weight	804.69	935.70	965.02
Crystal color	green	black	purple
morphology	block	platelet	block
Size / mm ³	$0.20\times0.05\times0.02$	$0.20\times0.20\times0.01$	$0.20\times0.20\times0.10$
Crystal system	moniclinic	monoclinic	monoclinic
Space group	<i>P</i> n (No. 7)	$P2_1/c$ (No. 14)	$P2_1/n$ (No. 14)
<i>a</i> / Å	18.0621(12)	17.920(6)	7.251(4)
<i>b</i> / Å	21.7543(11)	8.445(3)	27.486(13)
<i>c</i> / Å	18.1682(13)	26.392(9)	17.493(8)
lpha / degree	90	90	90
β / degree	108.862(3)	91.079(4)	93.977(6)
γ / degree	90	90	90
V / Å ³	6755.4(8)	3993(3)	3478(3)
Z value	8	4	4
T / K	150(2)	150(2)	150(2)
$D_{ m calc}$ / g cm $^{-3}$	1.582	1.556	1.843
<i>F</i> (000)	3228	1884	1884
μ / cm $^{-1}$	9.82	9.11	54.99
No. of reflections measured	69130	39213	35148
No. of unique reflections	29250	9025	7918
No. of observed reflections	29250	9025	7918
No. of variables	1860	558	458
Reflection/ Parameter Ratio	15.73	16.17	17.29
R1 [I > 2.00s(I)]	0.0620	0.0480	0.0622
$R_{ m w}$	0.1491	0.1326	0.0844
Goodness-of-fit	1.218	1.347	1.328

 $Table \ S1-4 \ {\rm Crystallographic} \ {\rm data} \ {\rm of} \ 1d^{\text{+}} {\rm \bullet} SbF_6^{\text{-}}, 1e^{\text{+}} {\rm \bullet} SbF_6^{\text{-}}, {\rm and} \ 1f^{\text{+}} {\rm \bullet} GaBr_4^{\text{-}}.$

Fig. S7-1 ¹H NMR of **1a** (DMSO- d_6).

Fig. S7-2 ¹³C NMR of **1a** (DMSO- d_6).

Fig. S8-1 ¹H NMR of **1b** (DMSO-*d*₆).

Fig. S8-2 ¹³C NMR of **1b** (DMSO-*d*₆).

Fig. S9-1 ¹H NMR of 1c (DMSO- d_6).

Fig. S9-2 13 C NMR of **1c** (DMSO- d_6).

Fig. S10-1 ¹H NMR of **1d** (DMSO- d_6).

Fig. S10-2 13 C NMR of **1d** (DMSO- d_6).

Fig. S11-1 ¹H NMR of **1e** (DMSO- d_6).

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	16	0	0.000100	0 6 4 1 5 9 7	1 550970
1	10	0	-0.000100	-0.04158/	-1.559870
2	7	0	4 872402	-2.700433	0.020724
3	7	0	-4.072493	0.113025	0.057155
5	6	0	1 3/8551	0.071872	0.030040
6	6	0	2 5/13/77	0.271231	0.580637
7	6	0	-3 651041	-0.593051	0.214079
8	6	Ő	-3 533227	-1.611268	1 162107
ğ	6	Ő	-2 331099	-2 301480	1 312086
10	6	ŏ	-1.219715	-2.003624	0.509609
11	6	Ō	1.219733	-2.003621	0.509470
12	6	0	2.331228	-2.301480	1.311795
13	6	0	3.533323	-1.611250	1.161703
14	6	0	3.651031	-0.592994	0.213686
15	6	0	2.543366	-0.271201	-0.580905
16	6	0	1.348466	-0.971868	-0.442387
17	6	0	0.000069	-3.970238	1.348380
18	6	0	-6.111287	-0.453816	-0.261307
19	6	0	-6.434584	-1.788448	-0.519911
20	6	0	-7.758877	-2.084449	-0.834938
21	6	0	-8.739915	-1.079968	-0.895687
22	6	0	-8.409318	0.248864	-0.647328
23	6	0	-7.085585	0.574773	-0.329764
24	6	0	-6.403563	1.818810	-0.039030
25	6	0	-6.820474	3.151874	0.052780
26	6	0	-5.888279	4.133295	0.376062
27	6	0	-4.545347	3.793870	0.613729
28	6	0	-4.103173	2.4/5618	0.528/6/
29	6	0	-5.041971	1.496483	0.193181
30	6	0	6.111418	-0.453/80	-0.260974
31	0	0	0.454950	-1./00400	-0.316939
32	0	0	8 740265	-2.084310	-0.855500
20	0	0	8.740303 8.400556	-1.079970	-0.694039
34	0	0	7 085673	0.246924	0.320/36
36	6	0	6 403448	1 818960	0.0305/11
37	6	0	6 820274	3 1 5 2 0 7 4	0.051906
38	6	Ő	5 887919	4 133592	0.374423
39	6	õ	4 544913	3 794197	0.611707
40	6	ŏ	4.102824	2.475895	0.527088
41	6	Ō	5.041778	1.496654	0.192231
42	1	0	-2.625661	0.513070	-1.325653
43	1	0	-4.376974	-1.848751	1.800961
44	1	0	-2.261582	-3.064905	2.077482
45	1	0	2.261826	-3.064938	2.077170
46	1	0	4.377132	-1.848743	1.800467
47	1	0	2.625444	0.513053	-1.325980
48	1	0	0.883523	-4.543266	1.060654
49	1	0	0.000220	-3.854514	2.442639
50	1	0	-0.883498	-4.543211	1.060893
51	1	0	-5.680507	-2.566975	-0.482427
52	1	0	-8.035664	-3.114406	-1.040252
53	1	0	-9.763387	-1.344938	-1.142419
54	1	0	-9.167302	1.025007	-0.703182
55	1	0	-7.859563	3.415237	-0.123172
56	1	0	-6.199501	5.170814	0.448562
57	1	0	-3.834813	4.573752	0.8/1362
28	1	U	-3.066919	2.219816	0./2004/
59	1	U	5.080915	-2.50/062	-0.481483
60	1	U	8.036334	-3.114530	-1.038078
01	1	U	9./03949	-1.344901	-1.140302
62	1	U	9.10/485	1.025117	-0./02203
03 64	1	0	1.039429	5.415592	-0.123/0/
04 65	1	0	3 821011	J.1/11JJ A 57A1AA	0.440039
03 66	1	0	3.034244 3.066516	4.574144	0.000700

 Table S2-1 Cartesian coordinates of optimized structure of 1a

Center Number	Atomic Number	Atomic Type	Coord X	dinates (Angst Y	roms) Z
	16		0.000013	0 922642	1 138403
2	7	0	-0.000136	-2.035246	1.634520
3	7	0	-4.860029	0.035083	-0.462818
4	7	0	4.860111	0.034776	-0.462291
5	6	0	-1.352723	-0.185987	0.783025
6	6	0	-2.532436	0.327389	0.251264
8	6	0	-3.033081	-0.497445	0.048096
9	6	0	-2.329215	-2.370106	0.866363
10	6	0	-1.217714	-1.550335	1.096564
11	6	0	1.217533	-1.550472	1.096702
12	6	0	2.329039	-2.370272	0.866658
13	6	0	3.530631	-1.856891	0.379889
14	6	0	3.655086	-0.49/696	0.048431
15	6	0	2.332443	-0.186127	0.231460
10	6	0	-0.000269	-3.348512	2.250795
18	6	Ő	-5.105188	1.447947	-0.430929
19	6	0	-4.632109	2.279204	-1.448898
20	6	0	-4.884875	3.651156	-1.402929
21	6	0	-5.622037	4.185383	-0.345497
22	6	0	-6.105623	3.349239	0.662457
23	6	0	-3.848932	1.975175	0.030010
24	6	0	-7 503035	0 119875	1 103738
25 26	6	0	-7.188539	-0.771148	-0.092670
27	6	0	-8.220588	-1.617379	-0.533654
28	6	0	-8.061150	-2.491513	-1.602559
29	6	0	-6.840836	-2.530244	-2.281648
30	6	0	-5.812659	-1.686165	-1.882146
31	6	0	-5.966076	-0.81065/	-0.793094
33	6	0	5 812966	-1 686834	-1 881087
34	6	Ő	6.841349	-2.530707	-2.280470
35	6	0	8.061792	-2.491291	-1.601646
36	6	0	8.221120	-1.616723	-0.533091
37	6	0	7.188846	-0.770720	-0.092173
38	6	0	7.503224	0.120675	1.103996
39 40	6	0	0.384491 5.848915	1.01/0/2	1.008349
40	6	0	6.105488	3.349725	0.660813
42	6	0	5.621578	4.185243	-0.347500
43	6	0	4.884205	3.650334	-1.404442
44	6	0	4.631585	2.278332	-1.449587
45	6	0	5.105010	1.447697	-0.431262
46	1	0	-2.578241	1.381478	0.00/032
47	1	0	-4.370303	-2.327273	1.077021
49	1	0	2.273269	-3.432272	1.077314
50	1	0	4.370244	-2.527549	0.246687
51	1	0	2.578304	1.381282	0.007273
52	1	0	0.884495	-3.445291	2.884200
53	1	0	-0.885012	-3.445091	2.884245
54 55	1	0	-0.000300	-4.181980	1.529094
56	1	0	-4.512984	4.297059	-2.192601
57	1	0	-5.823769	5.251861	-0.306462
58	1	0	-6.684789	3.767505	1.481976
59	1	0	-5.569552	0.391865	2.052922
60	1	0	-6.789612	1.572022	2.520764
61	1	0	-7.873025	-0.522925	1.912902
62 62	1	0	-8.348803	0.764838	0.828471
05 64	1	0	-9.1/1323	-1.369333	-0.005000
65	1	0	-6.698433	-3.199019	-3.125297
66	1	õ	-4.862888	-1.684881	-2.407497
67	1	0	4.863115	-1.686051	-2.406290
68	1	0	6.699005	-3.199839	-3.123846
69	1	0	8.882147	-3.135168	-1.904514
70	1	0	9.171951	-1.588140	-0.005304
/1	1	0	7.872960	-0.521902	1.913462
70			Q 2/01/21	11 /65/111	0 838649
72 73	1 1	0	8.349131 5 569740	0.765412	0.828648

Table S2-2 Cartesian coordinates of optimized structure of 1b

75	1	0	6.684787	3.768522	1.479967	
76	1	0	5.823225	5.251762	-0.309129	
77	1	0	4.512040	4.295750	-2.194383	
78	1	0	4.069301	1.840843	-2.268656	

Center Number	Atomic Number	Atomic Type	Coord X	linates (Angstr Y	roms) Z
1	16	0	-0.029909	0.563935	-1.593406
2	7	0	-0.014297	-2.424197	-1.320599
3	7	0	-4.698578	0.127260	0.644430
4	6	0	4.996294	0.085880	-0.375798
5	6	0	-1.519717	0.222682	-0.841505
7	ő	ŏ	-3.540726	-0.520093	0.150648
8	6	0	-3.418164	-1.917471	0.174178
9	6	0	-2.256489	-2.542812	-0.278188
10	6	0	-1.18/095	-1.813284	-0.811105
11	6	0	2.382568	-2.558839	-0.716939
13	6	0	3.615466	-1.943454	-0.502122
14	6	0	3.746635	-0.548194	-0.571833
15	6	0	2.592126	0.203439	-0.855740
10	6	0	-0.044142	-3.851835	-1.574549
18	6	Ő	-4.900773	1.524590	0.416416
19	6	0	-4.331043	2.451440	1.295399
20	6	0	-4.440089	3.819313	1.054710
21	6	0	-5.129145	4.270485	-0.074740
$\frac{22}{23}$	6	0	-5.629787	1.967797	-0.709657
24	6	0	-6.320532	1.051074	-1.614686
25	6	0	-6.861038	-0.150802	-1.313880
26	6	0	-6.881668	-0.816250	-0.012710
28	6	0	-8.064597	-2.260220	1.560001
29	6	Ő	-7.073818	-2.040890	2.521512
30	6	0	-5.984542	-1.227810	2.215974
31	6	0	-5.869815	-0.631298	0.956030
32	6	0	5.078003	1.507941	-0.251879
34	6	ŏ	5.136121	3.684765	-1.321437
35	6	0	5.078336	4.300901	-0.067938
36	6	0	5.036500	3.524707	1.084482
37	6	0	5.053179	2.117552	1.022477
39	6	0	5.646737	0.144600	2.480414
40	6	Ő	6.383033	-0.673043	1.518077
41	6	0	7.431929	-1.494413	1.975917
42	6	0	8.206497	-2.238977	1.093860
43	6	0	7.948434	-2.182025	-0.2/892/ 0.752185
45	6	ŏ	6.110349	-0.652398	0.132070
46	1	0	-2.503950	1.304296	-0.386024
47	1	0	-4.224957	-2.529048	0.558493
48	1	0	-2.19/652	-3.623339	-0.212522
50	1	0	4.472245	-2.560215	-0.260876
51	1	0	2.637656	1.284906	-0.890916
52	1	0	-0.981732	-4.105713	-2.074583
53 54	1	0	0.039/4/	-4.4/03//	-0.6656/1
55	1	0	-3.781731	2.077872	2.153658
56	1	ŏ	-3.981412	4.528578	1.736929
57	1	0	-5.211421	5.334493	-0.275395
58	1	0	-6.258925	3.706531	-1.813698
59 60	1	0	-0.500072 -7.436754	-0.644054	-2.015955
61	1	ŏ	-8.742634	-1.816597	-0.430292
62	1	0	-8.913301	-2.898868	1.786001
63	1	0	-7.145194	-2.508122	3.499060
64 65	1	0	-5.192711	-1.060071	2.939061
66	1 1	0	5.168956	4.284145	-2.226167
67	1	ŏ	5.067919	5.384056	0.008268
68	1	0	5.002436	4.004490	2.059104
69 70	1	0	4.663773	1.864094	3.133419
70 71	1 1	0	5.05/15/ 7.641480	-0.223969 -1 528648	3.304344 3.041830
72	1	Ő	9.012610	-2.860111	1.472809
73	1	0	8.550618	-2.758686	-0.974517
74	1	0	6.673558	-1.345889	-1.811681

Table S2-3 Cartesian coordinates of optimized structure of 1c

Center Atomic Atomic Coordinates (An Number Number Type X Y				AtomicAtomicCoordinates (Angstroms)NumberTypeXYZZYZ		
1			2 522760	1 1(0505	1 405(1)	
1	0	0	3.333/00	-1.109505	1.483016	
2	0	0	2.320820	-1.331/40	2.138393	
5	0	0	1.218011	-0.332132	1.899129	
4	6	0	1.33104/	0.432062	0.900340	
5	0	0	2.330927	0.394000	0.184931	
7	6	0	1 351827	-0.199229	0.40439/	
0	6	0	-1.33103/	0.432093	1 800122	
0	6	0	-1.210000 2 226020	1 251725	2 159/132	
10	1	0	-2.520650	-1.551725	2.130402	
10	1	0	3 522764	1 160/72	1 / 85629	
12	6	0	-3.555704	-1.1094/3	0.484407	
12	6	0	-3.033133	0.199190	0 18/055	
17	1	0	4 382662	-1 800248	1 726008	
15	1	0	2 260533	-2 136016	2 903203	
16	1	Ő	2.601976	1.340782	-0.599646	
17	1	õ	-4.382674	-1.800207	1.726021	
18	1	Ő	-2.601964	1.340802	-0.599641	
19	16	ŏ	0.000009	1.574665	0.595622	
20	6	õ	-0.000001	-1.423585	3.841758	
21	1	ŏ	-0.884093	-1.157313	4.424678	
22	1	ŏ	-0.000005	-2.514416	3,690014	
$\bar{23}$	1	ŏ	0.884095	-1.157320	4,424677	
24	7	ŏ	0.000002	-0.659362	2.605714	
25	, 7	ŏ	4.875676	-0.024233	-0.224511	
26	7	Ō	-4.875672	-0.024192	-0.224496	
27	6	ŏ	-5.580320	-1.160409	-0.704609	
28	6	Ō	-6.981382	-1.221012	-0.621558	
29	6	0	-4.886273	-2.245786	-1.264202	
30	6	0	-7.666502	-2.336621	-1.097949	
31	1	0	-7.525616	-0.391005	-0.183963	
32	6	0	-5.579969	-3.364357	-1.721021	
33	1	0	-3.804838	-2.204855	-1.338040	
34	6	0	-6.973133	-3.417426	-1.646249	
35	1	0	-8.750069	-2.365095	-1.025359	
36	1	0	-5.025728	-4.193477	-2.151806	
37	1	0	-7.510439	-4.287796	-2.009870	
38	6	0	-5.380820	1.285036	-0.446678	
39	6	0	-5.962531	1.627667	-1.678540	
40	6	0	-5.299222	2.260784	0.560294	
41	6	0	-6.459586	2.912049	-1.888138	
42	1	0	-6.021125	0.883316	-2.465345	
43	6	0	-5.782819	3.547617	0.333735	
44	1	0	-4.856275	2.003870	1.516541	
45	6	0	-6.370447	3.882047	-0.887683	
46	1	0	-6.905663	3.158622	-2.84/488	
47	1	0	-5.710559	4.288901	1.124536	
48	1	0	-0./51831	4.884009	-1.058056	
49	6	U	5.580256	-1.100453	-0.704722	
50	6	U	0.981308	-1.221191	-0.621597	
51	6	U	4.88614/	-2.245/05	-1.204483	
52	0	0	7.000337	-2.330804	-1.0980/9	
55	1	U	1.323391	-0.39128/	-0.183809	
54	0	0	2 201712	-3.304201	-1./21398	
55	1	0	5.604/20	-2.2040/2	-1.338382	
50	1	0	0.9/292/ 8 7/0010	-3.41/403	1 025427	
58	1	0	5 025/82	4 102201	-1.023427	
50	1	0	7 510179	-4.195501	-2.152510	
60	1 6	0	5 380880	1 28/088	-0.446500	
61	6	0	5 962486	1 627724	-1 678/87	
62	6	0	5 200/65	2 260629	-1.0/040/	
63	6	0	6 4 5 9 6 0 0	2.200020	-1 887003	
64	1	0	6 020042	0.883467	-1.00/993	
65	1 6	0	5 783172	3 547455	0 33/027	
66	1	0	4 856608	2 003635	1 516750	
67	6	0	6 270627	3 881087	_0 887/17	
68	1	0	6 905585	3 158757	-0.00/41/	
	1	U	0.905505	1 0 00 (5 2	-2.04/303	
60	1	Ω	57/1/1002	// /××トト・	/ 1///u//	

Table S2-4 Cartesian coordinates of optimized structure of 1d

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	16	0	-0.000024	-1.404877	0.945985
2	7	0	-0.000002	-2.043230	-1.992083
3	1	0	-4.899937	0.089234	-0.0836/3
4	6	0	-1.348696	-1.110424	-0.181213
5	6	0	-2.541590	-0.569382	0.292450
6	6	0	-3.65069/	-0.440581	-0.554246
/	6	0	-3.532348	-0.830287	-1.886882
8	6	0	-2.32/4/3	-1.336481	-2.3/4808
9	6	0	-1.219302	-1.499954	-1.530333
10	6	0	0.000026	-2./555/6	-3.262080
11	6	0	-6.329374	2.073917	0.118265
12	6	0	-6.483/81	3.456037	0.231776
13	6	0	-5.3/643/	4.301/93	0.172082
14	6	0	-4.108356	3.746452	0.020627
15	6	0	-3.941941	2.363309	-0.051515
10	6	0	-5.048123	1.500760	-0.002602
1/	6	0	-5./8/188	-0./81494	0.605/19
18	6	0	-5.360455	-2.01/498	1.115646
19	6	0	-6.24/846	-2.862603	1.782220
20	6	0	-7.573226	-2.484574	1.981915
21	6	0	-8.008776	-1.254925	1.488508
22	6	0	-7.137817	-0.422806	0.784176
23	I	0	-2.617985	-0.261203	1.330397
24	I	0	-4.386149	-0.720146	-2.546913
25	I	0	-2.256376	-1.599240	-3.423198
26	l	0	0.000000	-2.092714	-4.140233
27	1	0	-0.883484	-3.394760	-3.310062
28	1	0	-7.483380	3.864599	0.345685
29	1	0	-5.507776	5.376850	0.240898
30	1	0	-3.232473	4.386171	-0.031252
31	1	0	-2.945780	1.953249	-0.158133
32	1	0	-4.332063	-2.327393	0.980881
33	1	0	-5.887795	-3.816857	2.154837
34	1	0	-8.262781	-3.134254	2.511207
35	1	0	-9.038307	-0.939030	1.627766
36	7	0	4.899912	0.089230	-0.083625
37	6	0	1.348663	-1.110417	-0.181197
38	6	0	2.541557	-0.569383	0.292484
39	6	0	3.650669	-0.440559	-0.554200
40	6	0	3.532329	-0.830269	-1.886843
41	6	0	2.327463	-1.336461	-2.374780
42	6	0	1.219281	-1.499929	-1.530316
43	6	0	6.329473	2.073822	0.118145
44	6	0	6.483989	3.455931	0.231640
45	6	0	5.376690	4.301754	0.172078
46	6	0	4.108551	3.746500	0.020761
47	6	0	3.942031	2.363371	-0.051356
48	6	0	5.048166	1.500751	-0.002554
49	6	0	5.787101	-0.781484	0.605873
50	6	0	5.360296	-2.017370	1.115953
51	6	0	6.247649	-2.862467	1.782601
52	6	0	7.573078	-2.484536	1.982139
53	6	0	8.008726	-1.255007	1.488500
54	6	0	7.137791	-0.422904	0.784131
55	1	0	2.617939	-0.261235	1.330441
56	1	0	4.386140	-0.720126	-2.546861
57	1	0	2.256378	-1.599229	-3.423169
58	1	Ō	0.883590	-3.394686	-3.310060
59	1	Ō	7.483627	3.864431	0.345424
60	1	ŏ	5.508104	5.376803	0.240876
61	1	ŏ	3.232714	4.386289	-0.031023
62	1	Ő	2 945835	1 953372	-0 157877
63	1	Ő	4 331862	_2 327181	0.981301
6/	1	Ő	5 88753/	-3 816635	2 155377
65	1	0	8 262617	_3 13/206	2.133377
66	1	0	9 038305	_0.930210	1 627625
67	16	0	-7 777542	1 044047	0.003219
68	16	0	7 777520	1 0/13801	0.002219
	10			1.0+3001	0.002702

 Table S2-5 Cartesian coordinates of optimized structure of 1e

Center	Atomic	Atomic	Coord	linates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	16	0	-0.000002	0.006466	-1.215610
2	7	0	0.000001	-2.492553	0.603010
3	7	0	-4.979545	0.078701	0.034205
4	7	0	4.979540	0.078708	0.034212
5	6	0	-1.356872	-0.646679	-0.289363
6	6	0	-2.590026	-0.019906	-0.425790
7	6	0	-3.741468	-0.555809	0.170597
8	6	0	-3.618956	-1./362/4	0.930141
9	6	0	-2.391598	-2.356275	1.0/58/9
10	6	0	-1.22/861	-1.841422	0.463/64
11	6	0	1.227855	-1.841410	0.463776
12	6	0	2.391589	-2.336238	1.075902
15	6	0	3.010947	-1./3023/	0.950105
14	0	0	2 500022	-0.333798	0.170010
15	6	0	2.390022	-0.019901	-0.423780
10	6	0	0.000012	3 802127	1 051830
17	6	0	5 210042	-3.692127	0 140220
10	6	0	-3.219942	2 502182	0.142332
20	6	0	4 858855	3 793545	0.543165
20	6	0	6 221527	4 045171	0.32003/
21	6	0	-7 101778	3 001206	0.044111
23	6	Ő	-6 602526	1 701498	-0.046211
24	ő	Ő	-7 229246	0.412926	-0 284374
25	Ğ	ŏ	-8.540950	0.027403	-0.562772
26	6	Ō	-8.815227	-1.321634	-0.790089
27	6	0	-7.788287	-2.275790	-0.760645
28	6	0	-6.469232	-1.912602	-0.489062
29	6	0	-6.208453	-0.564995	-0.228076
30	6	0	5.219944	1.466309	0.142340
31	6	0	4.338058	2.502193	0.460353
32	6	0	4.858867	3.793553	0.543167
33	6	0	6.221541	4.045171	0.329950
34	6	0	7.101789	3.001201	0.044135
35	6	0	6.602530	1./01496	-0.046191
36	6	0	7.229246	0.412919	-0.284339
37	0	0	8.540955	0.02/388	-0.302/15
30	6	0	0.013220	-1.521052	-0.790021
39 40	6	0	6 460223	1 012605	-0.700390
40	6	0	6 208447	-0.564996	-0.228053
42	1	0	-2 668828	0.871200	-1.037688
43	1	ŏ	-4.482545	-2.131159	1.451208
44	1	Ō	-2.329646	-3.227081	1.715296
45	1	0	2.329632	-3.227060	1.715323
46	1	0	4.482534	-2.131136	1.451239
47	1	0	2.668825	0.871201	-1.037691
48	1	0	-0.000016	-3.975834	2.144504
49	1	0	-0.880065	-4.393584	0.652246
50	1	0	0.880129	-4.393551	0.652295
51	1	0	-3.287897	2.322062	0.656403
52	1	0	-4.193584	4.616276	0.784253
53	1	0	-6.596193	5.060945	0.400263
54	1	0	-8.160192	3.196200	-0.090005
33 56	1	0	-9.334313	0.700308	-0.011928
50	1	0	-7.031241	-1.0349/3	0.062114
58	1	0	-0.010410	-3.310934	-0.902114
59	1	0	3 287898	2 322080	0.656390
60	1	0	4 193597	4 616288	0 784245
61	1	Ő	6.596213	5.060942	0.400286
62	1	ŏ	8.160205	3,196188	-0.096630
63	1	ŏ	9.334522	0.766289	-0.611867
64	1	ŏ	9.831242	-1.634997	-1.005985
65	1	0	8.018401	-3.316948	-0.962049
66	1	0	5.681984	-2.656879	-0.502884

 Table S3-1 Cartesian coordinates of optimized structure of 1a⁺⁺

Table S3-2 Cartesian coordinates of optimized structure of 1b⁺⁺

Center	Atomic	Atomic	Coord	dinates (Angsti	roms)
Number	Number	Туре	Х	Y	Z
1	16	0	0.006152	0.719635	0.876547
2	7	0	0.007124	-2.379654	0.938126
3	7	0	-5.038506	0.037564	0.277490
4	7	0	4.913281	0.042854	-0.405703
5	6	0	-1.375536	-0.359067	0.669995
6	6	0	-2.618504	0.233173	0.503349
7	6	0	-3.799564	-0.541001	0.438269

8	6	0	-3.655581	-1.953494	0.504080
9	6	0	-2 416981	-2 537060	0.660983
10	6	0	1 025102	1 769460	0.000905
10	0	0	-1.235182	-1./08400	0./00101
11	6	0	1.217121	-1.771107	0.604789
12	6	0	2.379930	-2.540050	0.368775
13	Ğ	Õ	3 585878	1 050266	0.040306
1.5	0	0	3.363676	-1.939200	0.040300
14	6	0	3./11816	-0.549038	-0.086372
15	6	0	2.553434	0.226927	0.145531
16	6	0	1 343673	-0.362230	0 481104
17	6	0	0.025507	2 77771	1 202627
17	0	0	0.055507	-3./////1	1.393027
18	6	0	-6.210766	-0.760464	0.008667
19	6	0	-6.891688	-1.403802	1.042623
20	6	0	-8 034970	-2 148699	0 749860
20	6	0	9.400120	2.140077	0.749000
21	0	0	-8.490130	-2.232470	-0.300840
22	6	0	-7.807458	-1.572791	-1.590569
23	6	0	-6.655218	-0.828503	-1.319577
24	6	Ō	5 000078	0.055765	2 372211
24	0	0	-3.900078	-0.055705	-2.372211
25	6	0	-6.068943	1.468979	-2.223014
26	6	0	-5.704509	2.124760	-0.895942
27	6	0	-5 886383	3 51 50 78	-0.805815
20	6	0	5 605034	4 228061	0.252840
20	0	0	-3.003024	4.226901	0.555649
29	6	0	-5.138782	3.556581	1.485635
30	6	0	-4.960230	2.179691	1.431807
31	6	0	-5 224199	1 467190	0 251631
22	6	0	6.002020	0.704504	0.201001
32	0	0	0.092939	-0.724524	-0.720766
33	6	0	6.074700	-1.498602	-1.891379
34	6	0	7.184534	-2.245766	-2.266697
35	Ğ	Õ	8 33/608	2 204171	1 475679
55	0	0	0.554000	-2.204171	-1.475079
36	6	0	8.355107	-1.417493	-0.329164
37	6	0	7.245297	-0.661531	0.084302
38	6	0	7 412658	0 166696	1 352912
20	6	0	6 220084	1.022480	1 0/5700
39	0	0	0.229084	1.022489	1.845/88
40	6	0	5.736395	1.988503	0.797019
41	6	0	5.938527	3.370144	0.867938
42	6	Ō	5 500148	4 210603	0 157036
42	0	0	1.000140	4.210005	-0.157050
43	6	0	4.860705	3.6/8/85	-1.277807
44	6	0	4.656877	2.301356	-1.371999
45	6	0	5.086747	1.473710	-0.334182
46	ĩ	Õ	2 678573	1 310881	0.419570
40	1	0	-2.070575	2.59(220)	0.412000
47	1	0	-4.528569	-2.586320	0.413908
48	1	0	-2.363951	-3.618097	0.666651
49	1	0	2 337044	-3 620271	0 419360
50	1	0	4 4 4 5 7 1 1	2 502400	0.120110
50	1	0	4.443711	-2.393400	-0.129110
51	1	0	2.606748	1.305097	0.062199
52	1	0	0.946686	-3.947053	1.964619
53	1	0	-0.810493	-3 953263	2 055320
55	1	0	0.004062	4 492021	0.556405
54	1	0	-0.004963	-4.482931	0.556405
55	1	0	-6.529955	-1.313822	2.062194
56	1	0	-8.570672	-2.652618	1.547874
57	1	Ō	_9 381175	-2 808058	_0 797000
50	1	0	Q 171102	1 624450	2 612420
50	1	Ŭ	-0.1/1103	-1.030032	-2.012420
59	1	0	-4.835573	-0.315639	-2.334608
60	1	0	-6.255589	-0.340208	-3.367125
61	1	Ō	-5 488101	1 959074	-3 014269
60	1	0	7 117740	1 717020	2 420250
02	1	U	-/.11//09	1./1/252	-2.430339
63	1	0	-6.259146	4.044060	-1.679254
64	1	0	-5.757572	5.303283	0.378322
65	1	ň	1 032/181	1 005005	2 404401
05	1	0	-4.732401	1.(22152	2.404401
66	1	0	-4.622239	1.633153	2.306738
67	1	0	5.178809	-1.496463	-2.504465
68	1	0	7.158008	-2.840230	-3.174225
60	1	0	0 21 4012	2.070200	1 756120
09	1	Ŭ	9.214013	-2.//3128	-1./30130
70	1	0	9.257304	-1.382550	0.276220
71	1	0	7,708614	-0.510741	2.163513
72	1	ň	8 271611	0 831547	1 105704
72	1	0	5 400720	0.001047	1.175774
13	1	0	5.408/39	0.369863	2.100/09
74	1	0	6.555367	1.573012	2.733251
75	1	0	6.442677	3,789974	1.733978
76	1	ň	5 662650	5 201152	0.082029
70	1	U	5.005059	J.2011JJ	-0.002930
17	1	0	4.529756	4.330140	-2.080279
78	1	0	4.175680	1.866493	-2.242546

Table S3-3 Cartesian coordinates of optimized structure of 1c⁺⁺

Center	Atomic	Atomic	Coord	dinates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	16	0	0.015684	0.670360	-0.927308
2	7	0	0.002806	-2.421889	-0.710844
3	7	0	-5.034258	0.069425	-0.337241
4	7	0	4.905058	0.085491	0.474023
5	6	0	-1.372703	-0.380088	-0.640740
6	6	0	-2.615135	0.229044	-0.543323
7	6	0	-3.798184	-0.532442	-0.420245
8	6	0	-3.662548	-1.945550	-0.363705
9	6	0	-2.425397	-2.545420	-0.454361

10	6	0	-1.238370	-1.792992	-0.609883
11	6	0	1.211889	-1.790462	-0.420097
12	6	0	2.367582	-2.539544	-0.100366
13	6	0	3.572465	-1.935640	0.186801
14	ő	ŏ	3 704171	-0.521055	0 179799
15	6	0	2 553136	0.236305	0.130607
15	6	0	1 242705	0.230303	0.10007
10	0	0	1.545795	-0.570572	-0.422800
17	6	0	0.028563	-3.855217	-1.039725
18	6	0	-5.175361	1.498264	-0.272574
19	6	0	-5.046894	2.263167	-1.435037
20	6	0	-5.113910	3.652876	-1.366235
21	6	0	-5.308092	4.276869	-0.130016
22	6	0	-5.453155	3.512578	1.022056
23	ő	Ő	5 414275	2 105131	0.978034
20	6	0	5 656515	1 330770	2 100044
24	6	0	-5.050515	0.1259719	2.199944
25	0	0	-0.245708	0.1236/1	2.303633
26	6	0	-6./69046	-0./00504	1.218189
27	6	0	-7.884613	-1.527780	1.453629
28	6	0	-8.463576	-2.270417	0.430908
29	6	0	-7.937898	-2.210986	-0.863470
30	6	0	-6.820149	-1.419851	-1.118967
31	6	0	-6.229287	-0.688701	-0.085028
32	6	0	5.085213	1.505898	0.348445
33	ő	Ő	4 583748	2 361365	1 333150
34	6	Ő	4 695105	3 7/1506	1 180200
25	6	0	5 200202	4 265020	0.028282
35	0	0	5.309293	4.205050	0.030303
30 27	0	0	5.823957	3.411129	-0.930405
37	6	0	5./46699	2.011619	-0.790043
38	6	0	6.375896	1.151858	-1./91331
39	6	0	6.942556	-0.059752	-1.591263
40	6	0	7.053277	-0.788188	-0.328326
41	6	0	8.169656	-1.616521	-0.100492
42	6	0	8.352935	-2.265580	1.115132
43	6	0	7.417651	-2.107914	2.142654
44	6	0	6 292388	-1 313254	1 936060
45	ő	Ő	6 101347	-0.677035	0.706661
45	1	Ő	2 672454	1 310034	0.560535
40	1	0	4 520142	2 564255	0.000000
47	1	0	-4.559142	-2.304233	-0.224609
48	1	0	-2.3/0993	-3.022/80	-0.302081
49	1	0	2.31/610	-3.619244	-0.045/6/
50	l	0	4.425953	-2.553706	0.431681
51	1	0	2.610729	1.317244	-0.147601
52	1	0	-0.805404	-4.082497	-1.701053
53	1	0	0.949817	-4.081588	-1.573359
54	1	0	-0.036175	-4.482025	-0.143752
55	1	0	-4.880817	1.760296	-2.382560
56	1	0	-5.008893	4.245145	-2.269444
57	1	Ō	-5.353664	5.359502	-0.068614
58	1	ŏ	-5.622436	4,000466	1.977607
50	1	ñ	-5 43//30	1 864205	3 126583
60	1	ň	6 / 52122	0 230061	3 306600
61	1	0	-0.452152 9 206402	1 562022	2 452019
01	1	0	-8.300403	-1.303233	2.433910
62	1	0	-9.329273	-2.891265	0.638296
63	1	0	-8.391511	-2.782608	-1.666637
64	1	0	-6.387659	-1.3/2261	-2.113396
65	1	0	4.096880	1.935523	2.204865
66	1	0	4.299926	4.404187	1.943386
67	1	0	5.392256	5.339489	-0.090399
68	1	0	6.316536	3.821356	-1.807221
69	1	ŏ	6,490468	1.596449	-2.777343
70	1	ŏ	7,472971	-0.503949	-2.430493
71	1	ñ	8 907235	-1 727352	-0.890056
72	1	0	0.207233	2 880520	1 267187
72	1	0	7 560001	2.007329	2.006027
13	1	0	1.300881	-2.000094	3.090027
/4	1	0	5.547046	-1.190635	2./10094

Table S3-4 Cartesian coordinates of optimized structure of 1d⁺⁺

Center	Atomic	Atomic	Coord	dinates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	16	0	-0.000007	0.374925	-1.101871
2	7	0	0.000010	-2.471451	0.114726
3	7	0	-4.992289	0.144889	0.061909
4	7	0	4.992284	0.144944	0.061973
5	6	0	-1.361120	-0.477220	-0.362129
6	6	0	-2.591981	0.161817	-0.370639
7	6	0	-3.759832	-0.490285	0.078075
8	6	0	-3.625926	-1.814603	0.564588
9	6	0	-2.399441	-2.445547	0.579794
10	6	0	-1.228474	-1.810021	0.107569
11	6	0	1.228452	-1.809917	0.107772
12	6	0	2.399384	-2.445311	0.580338
13	6	0	3.625844	-1.814350	0.565165
14	6	0	3.759772	-0.490166	0.078292

15	6	0	2.591983	0.161861	-0.370634
16	6	0	1.361111	-0.477176	-0.362080
17	6	0	0.000024	-3.934744	0.253838
18	6	0	-5.092345	1.575927	0.048685
19	6	0	-5.887144	2.205962	-0.917316
20	6	0	-6.008399	3.594056	-0.914694
21	6	0	-5.337826	4.359187	0.042059
22	6	0	-4.547262	3.728573	1.005210
23	6	0	-4.426341	2.340108	1.016937
24	6	0	-6.212203	-0.608236	0.037562
25	6	0	-7.232417	-0.303286	0.948089
26	6	0	-8.428791	-1.016021	0.910265
27	6	0	-8.614389	-2.035301	-0.026770
28	6	0	-7.597539	-2.335574	-0.935306
29	6	0	-6.400297	-1.622223	-0.912361
30	6	0	5.092450	1.575953	0.048803
31	6	0	4.426389	2.340191	1.016967
32	6	Ō	4.547422	3.728647	1.005271
33	6	Ō	5.338170	4.359216	0.042239
34	6	Ō	6.008793	3,594029	-0.914434
35	6	Ō	5.887420	2.205950	-0.917100
36	6	Ō	6.212108	-0.608340	0.037508
37	6	Ō	7.232576	-0.303317	0.947736
38	Ğ	ŏ	8.428852	-1.016194	0.909757
39	Ğ	ŏ	8.614121	-2.035666	-0.027146
40	6	Ō	7.597021	-2.336005	-0.935367
41	Ğ	ŏ	6.399851	-1.622526	-0.912267
42	ĭ	ŏ	-2.657269	1.174210	-0.750613
43	1	ŏ	-4.491404	-2.329514	0.961929
44	1	ŏ	-2.343399	-3.436873	1.010520
45	1	ŏ	2.343245	-3.436539	1.011307
46	1	ŏ	4,491303	-2.329068	0.962810
47	1	ŏ	2.657308	1.174201	-0.750762
48	1	ŏ	-0.879978	-4.339116	-0.243381
49	1	Ō	0.880329	-4.339065	-0.242883
50	1	ŏ	-0.000285	-4.248771	1.303512
51	1	ŏ	-6.402963	1.607445	-1.660649
52	1	Ō	-6.623823	4.078310	-1.666210
53	1	ŏ	-5.435048	5.440029	0.040404
54	1	ŏ	-4.035251	4.316567	1.760463
55	1	ŏ	-3.830296	1.844991	1.776763
56	1	ŏ	-7.082394	0.486137	1.676833
57	1	ŏ	-9.215220	-0.778074	1.619446
58	1	Ō	-9.547824	-2.588168	-0.052170
59	1	ŏ	-7.740971	-3.116179	-1.675831
60	1	Ō	-5.617861	-1.837250	-1.632971
61	1	Ō	3,830193	1.845147	1.776717
62	1	Ō	4.035355	4.316660	1.760473
63	1	Ō	5.435472	5.440050	0.040603
64	1	Ō	6.624359	4.078245	-1.665856
65	1	ŏ	6.403259	1.607412	-1.660404
66	1	ŏ	7.082803	0.486268	1.676359
67	1	Ō	9.215469	-0.778240	1.618725
68	1	ŏ	9.547508	-2.588608	-0.052682
69	ī	ŏ	7.740177	-3.116758	-1.675787
70	1	Ō	5.617214	-1.837628	-1.632642

Table S3-5 Cartesian coordinates of optimized structure of 1e⁺⁺

Center	Atomic	Atomic	Coord	dinates (Angst	roms)	
Number	Number	Туре	Х	Y	Z	
1	16	0	0.027898	0.609632	-0.908773	
2	16	0	6.924807	0.684404	-1.496440	
3	16	0	-6.355106	0.896483	2.063535	
4	7	0	0.014137	-2.482283	-0.663588	
5	7	0	4.901279	0.053377	0.582099	
6	7	0	-5.044150	0.012945	-0.450469	
7	6	0	1.345434	-0.432120	-0.367231	
8	6	0	2.548466	0.185314	-0.056804	
9	6	0	3.697681	-0.563476	0.275470	
10	6	0	3.571032	-1.977238	0.274089	
11	6	0	2.372276	-2.587632	-0.027655	
12	6	0	1.216777	-1.845773	-0.359836	
13	6	0	-1.228529	-1.852336	-0.592294	
14	6	0	-2.416943	-2.601188	-0.439131	
15	6	0	-3.656703	-2.000896	-0.389106	
16	6	0	-3.796907	-0.591683	-0.490620	
17	6	0	-2.611220	0.166522	-0.594005	
18	6	0	-1.364786	-0.441720	-0.649245	
19	6	0	0.045902	-3.919770	-0.974055	
20	6	0	7.146298	-0.504243	-0.183244	
21	6	0	8.337327	-1.226118	-0.059945	
22	6	0	8.496604	-2.128005	0.990848	
23	6	0	7.488067	-2.284199	1.945103	

24	6	0	6.304304	-1.556247	1.835721
25	6	0	6.115791	-0.695998	0.749980
26	6	0	5.091702	1.466524	0.409434
27	6	0	4.429684	2.400171	1.212500
28	6	0	4.623573	3.763027	0.993312
29	6	Ō	5.502198	4.193634	-0.004128
30	6	Ō	6.209057	3.266054	-0.767583
31	6	Ō	6.008909	1.897667	-0.561547
32	6	ŏ	-5.781909	1.986993	0.772427
33	6	Ō	-5.932846	3.372815	0.881792
34	6	Ō	-5.504368	4.201727	-0.153592
35	6	ŏ	-4.960770	3.652409	-1.317689
36	6	ŏ	-4.820224	2.271024	-1.438399
37	6	Ō	-5.193845	1,439280	-0.378250
38	6	ŏ	-6.239381	-0.729275	-0.161418
39	6	ŏ	-6.733613	-1.697478	-1.041040
40	6	ŏ	-7.883626	-2.412006	-0.709971
41	6	ŏ	-8.559692	-2.137047	0.481426
42	6	ŏ	-8.104647	-1.131212	1.332395
43	6	ŏ	-6.943666	-0.420775	1.012702
44	1	ŏ	2.599764	1.265502	-0.092101
45	1	ŏ	4,423508	-2.597514	0.513375
46	1	ŏ	2.330961	-3.667865	0.020108
47	1	ŏ	-2.369712	-3.675155	-0.313353
48	1	ŏ	-4.529071	-2.621724	-0.238701
49	1	Ō	-2.661845	1.247068	-0.620113
50	1	Ō	-0.784959	-4.158129	-1.635191
51	1	Ō	0.969490	-4.149882	-1.502340
52	1	0	-0.019398	-4.535053	-0.070217
53	1	Ō	9.137449	-1.067488	-0.775596
54	1	0	9.422183	-2.687243	1.080963
55	1	0	7.628425	-2.959675	2.782497
56	1	0	5.522156	-1.652221	2.581978
57	1	0	3.766335	2.052751	1.998095
58	1	0	4.101472	4.486453	1.610788
59	1	0	5.660625	5.254485	-0.168758
60	1	0	6.927098	3.597269	-1.510725
61	1	0	-6.399127	3.793276	1.766838
62	1	0	-5.623158	5.276589	-0.063210
63	1	0	-4.661580	4.296882	-2.137663
64	1	0	-4.419639	1.831199	-2.346103
65	1	0	-6.212180	-1.886197	-1.973948
66	1	0	-8.259583	-3.170305	-1.388813
67	1	0	-9.460498	-2.686336	0.735175
68	1	0	-8.653616	-0.883627	2.235090

Summary of results of TD-DFT calculation for **1a⁺⁺** using the *Gaussian 09* program at UB3LYP/6-31(d,p) level of theory with the broken symmetry method.

Excited State	1:	2.010-A	0.6921 eV	1791.52 nm	f=0.3945	<s**2>=0.760</s**2>
141B ->142B	3	1.02887				
141B <-142B	3	-0.25445				
This state for opt	imiz	zation and/or se	cond-order	correction.		
Total Energy, E(TD-	HF/TD-KS) =	-1987.283	39312		
Copying the exci	ted	state density for	this state a	s the 1-particl	e RhoCI dei	nsity.
Excited State 139B ->142B 140B ->142B	2: 8 8	2.015-A 0.99118 -0.12014	0.7996 eV	1550.65 nm	f=0.0001	<s**2>=0.765</s**2>
Excited State 138B ->142B 139B ->142B 140B ->142B	3: 3 3 3	2.015-A -0.17707 0.12177 0.97525	0.7996 eV	1550.62 nm	f=0.0001	<s**2>=0.765</s**2>
Excited State 135B ->142B 138B ->142B 140B ->142B	4: 3 3 3	2.008-A 0.10318 0.97745 0.17737	0.9707 eV	1277.23 nm	f=0.0203	<\$**2>=0.758
Excited State 135B ->142B 137B ->142B	5: 3 3	2.018-A -0.44651 0.88635	1.8261 eV	678.97 nm	f=0.0106	<s**2>=0.768</s**2>

Summary of results of TD-DFT calculation for **1b**⁺ using the *Gaussian 09* program at UB3LYP/6-31(d,p) level of theory with the broken symmetry method.

Excited State	1:	2.014-A	1.2656 eV	979.68 nm	f=0.4211	<s**2>=0.764</s**2>
157B ->158	В	0.99455				
This state for op	otimi	zation and/or se	cond-order c	orrection.		
Total Energy, E	(TD	-HF/TD-KS) =	-2144.4991	8447		
Copying the exc	cited	state density for	this state as	the 1-particle	e RhoCI der	nsity.
Excited State	2:	2.022-A	1.5685 eV	790.45 nm	f=0.0033	<s**2>=0.772</s**2>
149B ->158	В	0.14254				
154B ->158	В	0.13678				
156B ->158	В	0.96411				
Excited State	3:	2.016-A	2.0357 eV	609.05 nm	f=0.0039	<s**2>=0.767</s**2>
154B ->158	В	-0.39241				
155B ->158	В	0.89208				
156B ->158	В	0.16344				
Excited State	4:	2.016-A	2.0652 eV	600.35 nm	f=0.0029	<\$**2>=0.766
154B ->158	В	0.89036				
155B ->158	В	0.42226				
Excited State	5:	2.015-A	2.2370 eV	554.25 nm	f=0.0002	<s**2>=0.765</s**2>
152B ->158	В	-0.51855				
153B ->158	В	0.84526				

Summary of results of TD-DFT calculation for **1c⁺** using the *Gaussian 09* program at UB3LYP/6-31(d,p) level of theory with the broken symmetry method.

Excited State	1:	2.014-A	1.2968 eV	956.08 nm	f=0.3420	<s**2>=0.764</s**2>
155B ->156	В	0.99446				
This state for op	otimi	zation and/or see	cond-order co	orrection.		
Total Energy, E	(TD-	-HF/TD-KS) =	-2142.0595	4141		
Copying the exc	cited	state density for	this state as	the 1-particle	RhoCI den	sity.
Excited State 152B ->156 154B ->156	2: B B	2.015-A 0.23824 0.96838	1.4642 eV	846.76 nm	f=0.0027	<\$**2>=0.765
Excited State 153B ->156	3: B	2.013-A 0.99681	1.5531 eV	798.32 nm	f=0.0584	<s**2>=0.763</s**2>
Excited State 149B ->156 152B ->156 154B ->156	4: B B B	2.021-A -0.12097 0.95319 -0.24449	1.6389 eV	756.50 nm	f=0.0010	<\$**2>=0.771
Excited State 151B ->156	5: B	2.015-A 0.99493	2.3161 eV	535.32 nm	f=0.0008	<s**2>=0.766</s**2>

Summary of results of TD-DFT calculation for **1d**⁺⁺ using the *Gaussian 09* program at UB3LYP/6-31(d,p) level of theory with the broken symmetry method.

Excitation energies and oscillator strengths:

Excited State 1: 2.012-A 1.0044 eV 1234.36 nm f=0.4606 <S**2>=0.762 143B ->144B 1.00148 143B <-144B -0.12568 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -1989.65309942Copying the excited state density for this state as the 1-particle RhoCI density. 1.3877 eV 893.46 nm f=0.0119 <S**2>=0.767 Excited State 2: 2.017-A 141B ->144B 0.13777 142B ->144B 0.97641 2.1272 eV 582.85 nm f=0.0140 <S**2>=0.772 Excited State 3: 2.022-A 137B ->144B 0.29349 139B ->144B 0.21930 141B ->144B 0.90383 142B ->144B -0.16155 2.2902 eV 541.38 nm f=0.0003 <S**2>=0.770 Excited State 4: 2.020-A 140B ->144B 0.99497 Excited State 5: 2.020-A 2.3573 eV 525.95 nm f=0.0006 <S**2>=0.770 137B ->144B 0.25505 139B ->144B 0.90622 141B ->144B -0.31928

Summary of results of TD-DFT calculation for **1e⁺⁺** using the *Gaussian 09* program at UB3LYP/6-31(d,p) level of theory with the broken symmetry method.

Excited State	1:	2.013-A	1.1213 eV	1105.73 nm	f=0.3284	<s**2>=0.763</s**2>
157B ->158	В	0.99728				
This state for op	otimi	zation and/or se	cond-order d	correction.		
Total Energy, E	(TD	-HF/TD-KS) =	-2783.6093	32023		
Copying the exc	cited	state density for	this state as	s the 1-particl	e RhoCI de	nsity.
Excited State	2:	2.014-A	1.2936 eV	958.44 nm	f=0.0063	<s**2>=0.764</s**2>
154B ->158	В	0.13740				
156B ->158	В	0.98650				
E : 10	2	2014 4	1 5240 14	007 70	6 0 0000	0**0 07(4
Excited State	3: D	2.014-A	1.5349 eV	807.78 nm	1=0.0986	<5**2>=0.764
122R ->128	В	0.99531				
Excited State	4:	2.020-A	1.6184 eV	766.09 nm	f=0.0010	<s**2>=0.770</s**2>
151B ->158	В	0.16432				
154B ->158	В	0.96496				
156B ->158	В	-0.14894				
Excited State	5:	2.020-A	2.3267 eV	532.88 nm	f=0.0278	<\$**2>=0.770
149B ->158	В	-0.21838				
151B ->158	В	-0.45621				
152B ->158	В	-0.57731				
153B ->158	В	0.61499				
154B ->158	В	0.10766				

Compound	Experimental / nm	TDDFT /nm (assignment)	Dihedral angle ^a
			(plane A/C) / (plane B/D)
1a*+	1200	1550 (SOMO-β to LUMO-β)	43.8° / 43.8°
1b*+	950	979 (SOMO- β to LUMO- β)	5.98°/ 6.83°
1c*+	918	956 (SOMO- β to LUMO- β)	2.94°/ 2.64°
1d*+	1118	1234 (SOMO-β to LUMO-β)	23.1° / 23.1°
1e'+	963	1105 (SOMO- β to LUMO- β)	4.73°/ 3.85°

Table 4 Comparison of near-IR absorption bands and dihedral angles.

^aCalculated values from the optimized structures. For naming of planes in $(Ar_2N)_2$ -PTZ, see Fig. 3.

Reference

- [S1] Phenoxazine radical cation $2\mathbf{f}^+ \cdot \mathbf{PF}_6^-$ was prepared from $2\mathbf{f}$ using tris(4-bromophenyl)aminium hexafluorophosphate as an oxidant.
- [S2] *Gaussian 09*, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.