Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

1 Supporting Information

² Ag₃PO₄ Electrocatalyst for Oxygen Reduction ³ Reaction: Enhancement from Positive Charge

4 Yong Qin,^{†,#} Fan Li,^{†,#} Peng Tu,^{‡,#} Yanling Ma,[†] Wenlong Chen,[†] Fenglei Shi,[†] Qian Xiang,[†] Hao

5 Shan,[†] Lifu Zhang,[†] Peng Tao,[†] Chengyi Song,[†] Wen Shang,[†] Tao Deng,[†] Hong Zhu, *,^{†,‡,§} Jianbo

6 Wu,*^{†,§}

7 [†]State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering,

8 Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, People's Republic of China.

9 [‡]University of Michigan – Shanghai Jiao Tong University Joint Institute, Shanghai

10 Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China

11 §Materials Genome Initiative Center, Shanghai Jiao Tong University, 800 Dongchuan

12 Road, Shanghai, 200240, P. R. China

13 *E-mail: jianbowu@sjtu.edu.cn

14 *E-mail: hong.zhu@sjtu.edu.cn

15 #These authors contribute equally to this work

16 Correspondence and requests for materials should be addressed to J. B. Wu, H. Zhu

- 17
- 18
- 19
- 20 21
- 21
- 23
- 24
- 25
- 26

28 Figure S1. TEM micrograph of Ag_3PO_4 crystals (a) tetrahedron, (b) rhombic 29 dodecahedron, (c) cube

30 As shown in **Figure S1**, Ag₃PO₄ tetrahedron, rhombic dodecahedron, and cube with 31 regular structures have been fabricated. These three types' plane projection draws are 32 triangle, hexagon and quadrangle, respectively. These results are consistent with the 33 SEM images of crystals in Figure 1.

34

35 **Figure S2.** Particle size distribution of Ag_3PO_4 with different facets: (a) tetrahedron 36 (b) rhombic dodecahedron (c) cube.

37 The size distribution of Ag_3PO_4 with different facets is counted according to SEM 38 micrographs of different Ag_3PO_4 crystals. The particle sizes follow a normal 39 distribution as shown in **Figure S2**. And the average size is applied to the calculation 40 of atomic activity about different Ag_3PO_4 crystals.

41

42

45 Figure S3. SEM micrograph of (a, b, c) Ag₃PO₄/C and (d, e, f) Ag₃PO₄/CNT. (a, d)
46 tetrahedron; (b, e) rhombic dodecahedron; (c, f) cube

47 Figure S3 shows the SEM images of Ag₃PO₄/C and Ag₃PO₄/CNT. We can find that
48 the carbon is amorphous, while the carbon nanotube is slender tubular. And the
49 Ag₃PO₄ crystals with different facet were dispersed in carbon and carbon nanotube,
50 respectively.

52 Figure S4. XRD pattern of (a) Ag₃PO₄/C and (b) Ag₃PO₄/CNT.

53 The XRD pattern shows that all of the diffraction peaks could be indexed to 54 Ag₃PO₄/C (Figure S4a) and Ag₃PO₄/CNT (Figure S4b).

55

56 **Figure S5.** CV curves of tetrahedral, rhombic dodecahedral and cubic Ag_3PO_4 57 catalysts (a) pure Ag_3PO_4 , (b) Ag_3PO_4/C , (c) Ag_3PO_4/CNT . The mass of Ag_3PO_4 is 10 58 μg

60 Figure S6. RDE voltammograms for the ORR of (a) tetrahedral, (b) rhombic 61 dodecahedral and (c) cubic, Ag_3PO_4/CNT electrocatalysts at various rotation rates, 62 (d) Koutecky–Levich plots of the rotating disk current at 0.3 V (vs. RHE). The tests 63 were conducted in O₂-saturated 0.1 M KOH solution and the scan rate was kept at 10 64 mV/s

65 Meanwhile, we test the Ag_3PO_4/CNT catalysts ORR performance of rotation speed of 66 RDE from 400 to 2500 rpm shown as **Figure S4**. From the ORR curve, the numerical 67 value of n was calculated to be 2.8, 2.9 and 2.7, respectively, for tetrahedral, rhombic 68 dodecahedral and cubic of Ag_3PO_4/CNT catalysts at 0.3V (vs. RHE).

69

70 Figure S7. ORR stability of as-prepared Ag₃PO₄/CNT catalyst after 5000 cycles.

The long-term stability of catalyst was evaluated through accelerated durability test
(ADT) by applying cyclic potential sweep between 0.6 and 1.0 V vs.RHE in an Arsaturated 0.1 M KOH solution at room temperature. We can obtain the reduced 12.5%
mass activity from Figure S7 after 5000 cycles.

75

76 Figure S8. ORR stability of commercial Pt/C catalyst after 5000 cycles.

77 After 5000 cycles, the mass activity of commercial Pt/C was reduced 36% from 78 Figure S8. Compared to commercial Pt/C, the rhombic dodecahedral Ag_3PO_4/CNT 79 catalyst possesses better stability.

80

81 Figure S9. ORR Polarization curve of Ag in 0.1 M KOH

	Sample	Metal loading(ug) I _k (m	A) Mass activity	(mA/µg) at 0.8 V			
	Ag 10		0.060	070 0.0	0.00607			
	Pt/C	8	1.196	<i>6</i> 00 0.	14950			
113	Table S2. Ato	Cable S2. Atomic activity and relevant parameters						
	Facet		$Ag_3PO_4{11}$	1} $Ag_3PO_4\{110\}$	$Ag_{3}PO_{4}\{100\}$			
	Average size(nm)		1140	478.2	676.7			
	Shape		tetrahedro	n rhombic dodecahedron	cube			
	Volume of single crystal(Å3), V		1.7460×10	¹¹ 3.3672×10 ¹¹	3.0988×10 ¹¹			
	Density of A	Ag ₃ PO ₄ (g/cm ³), ρ	6.08	6.08	6.08			
	Total Ag Atoms in single crystal, ^{Ag} total		1.75×10 ⁹	6.51×10 ⁹	3.31×10 ⁹			
	Surface a crystal (Å	area of single $Ag_{surface}$	2.251×10 ⁸	⁸ 2.587×10 ⁸	2.748×10 ⁸			
	Ag atom de	nsity(atom/Ų), ω	0.046305	0.075615	0.053468			
	Outmos rati	t Ag atomic o(%), <i>i</i>	0.228	0.222	0.181			
	Loading of A	$Ag_3PO_4(\mu g), m$	10	10	10			
	Total Ag At	toms, $Ag_{loading}$	4.31608×10) ¹⁶ 4.31608×10 ¹⁶	4.31608×10 ¹⁶			
	Ag atoms i reactior	nvolved in the $a_{i,i}Ag_{involed}$	1.35525×10) ¹⁴ 1.05744×10 ¹⁴	1.04017×10 ¹⁴			
	Kinetic cu	$Irrent(mA), I_k$	0.0359	0.0431	0.0270			
	Atom (mA/atom	ic activity m _{Ag),} i _{k,atom}	3.65137×10	-16 4.50425×10 ⁻¹⁶	3.45801×10 ⁻¹⁶			

112 **Table S1.** Kinetic current (I_k) of Ag, Pt/C catalysts in 0.1 mol/L KOH.

114 **Table S2** shows the relevant parameters of calculation of atomic activity. According 115 to particle size distribution of Ag_3PO_4 with different facets, we can obtain the average 116 size. Combined with the shape, the volume of single crystal is received. So that Ag 117 atomic ratio on the surface can be obtained according to following formula:

$$Ag_{total} = \frac{\rho \cdot V}{M_{Ag_3}PO_4} \cdot N_A \cdot 3 \tag{1}$$

$$119 \quad Ag_{surface} = S \cdot \omega \tag{2}$$

$$i = \frac{Ag_{surface}}{Ag_{total}} \times 100\%$$
(3)

121 where ${}^{Ag}{}_{total}$ is the total number of Ag atoms in single crystal, ρ is density of Ag₃PO₄, 122 *V* is the volume of single crystal, ${}^{M_{Ag_3}PO_4}$ is molecular weigh of Ag₃PO₄, N_A is 123 Avogadro's number, ${}^{Ag}{}_{surface}$ means the number of outmost Ag atoms on the surface 124 of single crystal, *S* is the surface area of single crystal, ω is the surface Ag atom denity, 125 *i* means outmost Ag atomic ratio.

The loading mass of Ag_3PO_4 is 10 µg, which means the loading of Ag and the number of Ag atoms involved in the reaction can be received. Assume that all Ag atoms on the surface are involved in the reaction, so the catalytic atomic activity of single Ag atom on the surface can be calculated according to the following formula:

$$Ag_{loading} = \frac{m}{M_{Ag_3PO_4}} \cdot 3$$
130
(4)

$$131 \quad Ag_{involed} = Ag_{loading} \cdot i \tag{5}$$

$$i_{k,atom} = \frac{I_K}{Ag_{involed}}$$
(6)

133 where $Ag_{loading}$ is the total number of Ag atoms of loading on the RDE, *m* is the 134 loading mass of Ag₃PO₄, $Ag_{involed}$ is the number of Ag surface atoms involved in the 135 reaction, I_k is kinetic current, $i_{k,atom}$ is catalytic atomic activity of single Ag atom on 136 the surface.

137 Table S3. Atomic activity and parameters of pure Ag

Materials	Pure Ag	
Average size (nm)	23.7	
Kinetic current(mA), I_k	0.0607	
Atomic activity (mA/atom _{Ag}), $i_{k,atom}$	5.99961×10 ⁻¹⁷	

138

139 Computational Method

The density functional theory (DFT) calculations with the Perdew-Burke-Ernzerhof (PBE)¹ generalized gradient approximation (GGA) and projector augmented wave (PAW)² pseudopotentials were performed within the Vienna Ab Initio Simulation Package (VASP). For all Ag_3PO_4 slabs considered, namely {111}, {110}, and {100} surfaces, the energy cut-off for the plane wave expansion of 520 eV, a 4*2*1 k-point mesh and a vacuum region of 20 Å were used.

To study the O adsorption on the three surfaces, we placed the O atom onto the 2*1
slabs. For each slab with adsorbate, several possible adsorption sites were considered,
including top, bridge, and hollow (see Figure 5 and Table S4 for more details).

The absorption energy (E_{ads}) is calculated from the total energy difference between the slab with the adsorbate $(E_{Ag3PO4-O})$, the slab without the adsorbate (E_{Ag3PO4}) , and the adsorbate in the gas phase (E_{O2}) . Therefore, the adsorption energy can be written as

$$E_{ads} = E_{Ag_3PO_4 - 0} - E_{Ag_3PO_4} - \frac{1}{2}E_{O_2}$$
(7)

154 The preferential adsorption energy for Ag₃PO₄ {111}, {110}, and {100} surfaces, i.e.
155 the adsorption energy for most favored adsorption site, is -2.151 eV, -0.830 eV, -

156 2.996 eV, respectively. The most preferential adsorption sites are bolded in Table S4. 157 Our volcano plot combining the adsorption energy and atomic activity is shown in 158 Figure 4e. It's obvious that the number of the stable site in one slab accounts for the highest proportion. 159

160

161

162	Table S4. Adsorption energy for O on Ag_3PO_4 {111}, {110} and						
	Surface Orientation	Adsorption sites	E _{ads}				
	{111}	Ag-top	-2.151				
		Ag-Ag_bridge1	1.834				
		Ag-Ag_bridge2	2.424				
		Ag_hollow1	2.050				
	Surface Orientation	Adsorption sites	E _{ads}				
	{110}	Ag_top1	1.925				
		Ag_top2	-0.830 1.232 4.292 -0.011				
		Ag_top3					
		Ag_top4					
		Ag-Ag_bridge1					
		Ag-Ag_bridge2 Ag-Ag_bridge3	2.254				
			-0.426				
		Ag-Ag_bridge4	4.574				
	Surface Orientation	Adsorption sites	E _{ads}				
	{100}	Ag_top	0.642				
		P_top	2.163				
		Ag-Ag_bridge	0.016				
		P-P_bridge1	0.822				
		P-P_bridge2	2.775				
		P-Ag_bridge	-2.996				
163	Note: 1. Preferential adsorption sites are bolded.						
164	2. All the units of energies are eV.						
165	Table S5. Adsorption energy for O on pure Ag						
	Adsorption sites	Eads					
	bridge	-0.243					
	fcc	-0.398					

hcp

top

-0.493

1.058

Table S4 Advantion energy for Ω on $Ag_{2}P\Omega_{1}$ (111) (110) 162 d {100}.

166 **Reference:**

- 167 1 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1997, **78**, 1396-1396.
- 168 2 P. E. Blöchl, O. Jepsen and O. K. Andersen, *Physical Review B*, 1994, **49**, 16223-16233.

169