Coherency Image Analysis to Quantify Collagen Architecture: Implications in Scar Assessment

T. D. Clemons,^a M. Bradshaw,^a P. Toshniwal,^a N. Chaudhari,^a A. Stevenson,^b J. Lynch,^{b,c} M. W. Fear,^b F. M. Wood^b and K. S. Iyer^a

^a School of Molecular Sciences M313, The University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia.
 ^b Fiona Wood Foundation and Burn Injury Research Unit, M318, The University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia.
 ^c Royal College of Surgeon's of Ireland, 123 St Stephen's Green, Dublin, Ireland.

Supporting Information

Table S1 – Current quantitative methods to determine collagen architecture in the skin

	Reference	Summary of Key Findings
Method	paper	
OrientationJ Analysis		Successfully differentiates between normal and scar modelled environments <i>in vitro</i>
(ImageJ)		 Greater sensitivity when compared to Fourier analysis methods Suitable for analysing coherency differences in the collagen deposited by human keloid scars Quick and easy quantitative analysis method of assessing collagen
Fourier Analysis and Collagen Orientation Index (COI)	Van Zuijlen et al. ¹ Verhaegen et al. ²	 structure in scarring Study compared the accuracy of Fourier analysis of confocal images with individual observers of polarised light and the confocal images of scar tissue and normal skin.¹ In follow up work they used the COI to try and differentiate between normal skin, normotrophic, hypertrophic, and keloid scars.² Fourier analysis was able to achieve a superior measurement of collagen orientation compared with subjective histological evaluation by several experts in the field.¹ The COI (based on Fourier analysis) was significantly less for normal skin when compared to scar but was unable to define differences between the scar types.²
Second Harmomic Generation (SHG) imaging	Tanaka et al. ³	 In vivo SHG imaging of dermal collagen fibres following burns in a rat model.³ Similar to <i>ex vivo</i> analysis of skin sections, SHG imaging is able to discriminate between the effects of thermal denaturation of collagen molecules following a burn injury.³ Expensive specialised equipment required.
Confocal Microscopy	Khorasani et al. ⁴	 Scar collagen morphology comparing differences in full thickness burns and normal tissue using fractal dimension and lacunarity analysis was achieved.⁴ Confirmed with transmission electron microscopy for comparison.⁴ More sensitive than Fourier analysis for quantification of scar morphology.
Histological Staining (e.g. Masson's trichrome or Herovici)	Rawlins et al. ⁵ Sanders et al. ⁶	 Able to determine the differences in mature burn scars with normal skin. Herovici staining can differentiate type I collagen (red) from type III collagen (blue).⁵ Masson's suitable for measuring differences' in collagen density in mechanically stressed vs normal skin with computer aided image processing.⁶ Quantification of collagen possible with post image analysis software of pixel colour thresholding. Unable to be used <i>in vitro</i>.

Figure S1 – Inter and intra-rater reliability of the coherency measurement for *in vitro* collagen deposition in a scar like environment (A) and skin tissue sections (B). No significant difference was observed between rater 1's repeated measures or between rater 1 and rater 2 for the *in vitro* (n=18 images) or the *in vivo* samples (n=50 images). Data displayed as mean \pm SD and statistically assessed with a one-way ANOVA followed by a Bonferroni comparison test (p<0.05).

Supporting Information References

- 1. van Zuijlen, P. P.; de Vries, H. J.; Lamme, E. N.; Coppens, J. E.; van Marle, J.; Kreis, R. W.; Middelkoop, E., Morphometry of dermal collagen orientation by Fourier analysis is superior to multi-observer assessment. *J Pathol* **2002**, *198* (3), 284-91.
- 2. Verhaegen, P. D.; Van Zuijlen, P. P.; Pennings, N. M.; Van Marle, J.; Niessen, F. B.; Van Der Horst, C. M.; Middelkoop, E., Differences in collagen architecture between keloid, hypertrophic scar, normotrophic scar, and normal skin: an objective histopathological analysis. *Wound Repair Regen* **2009**, *17* (5), 649-656.
- 3. Tanaka, R.; Fukushima, S.; Sasaki, K.; Tanaka, Y.; Murota, H.; Matsumoto, T.; Araki, T.; Yasui, T., In vivo visualization of dermal collagen fiber in skin burn by collagen-sensitive second-harmonic-generation microscopy. *J Biomed Opt* **2013**, *18* (6).
- 4. Khorasani, H.; Zheng, Z.; Nguyen, C.; Zara, J.; Zhang, X. L.; Wang, J. C.; Ting, K.; Soo, C., A Quantitative Approach to Scar Analysis. *Am J Pathol* **2011**, *178* (2), 621-628.
- 5. Rawlins, J. M.; Lam, W. L.; Karoo, R. O.; Naylor, I. L.; Sharpe, D. T., Quantifying collagen type in mature burn scars: A novel approach using histology and digital image analysis. *J Burn Care Res* **2006**, *27* (1), 60-65.
- 6. Sanders, J. E.; Goldstein, B. S.; Leotta, D. F.; Richards, K. A., Image processing techniques for quantitative analysis of skin structures. *Comput Meth Prog Bio* **1999**, *59* (3), 167-180.