Metal-Free Oxidative Isocyanides Insertion with Aromatic Aldehydes to Aroylated N -heterocycles

Yimiao He, ${ }^{* a}$ Xuelian Wang, a Jun-An Xiao, ${ }^{\text {a }}$ Jinying Pang, ${ }^{a}$ Chunfang Gan, ${ }^{a}$ Yanmin Huang, ${ }^{\text {a }}$ Chusheng Huang*a
College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning 530001, P.R.China.E-mail: heyimiao@gxtc.edu.cn; huangcs@gxtc.edu.cn.

Table of contents

1. General information 2
2. Synthesis of isocyanides 2
2.1 Synthesis of phenyl isocyanides $\mathbf{1 a - 1 w}$ 2
2.2 Synthesis of vinyl isocyanides $\mathbf{4 a - 4 e}$ 3
3. Synthesis of material 6 4
4. General procedure and product characterization 4
4.1 General procedure 4
4.2 Product characterization. 6
5. Free-Radical inhibition experiment 18
6. References 19
7. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra 20

1. General information

Reactions were monitored by using thin-layer chromatography (TLC) on commercial silica gel plates (GF254). Visualization of the developed plates was performed under UV lights (254 nm). Flash column chromatography was performed on silica gel (200-300 mesh). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AV300, 400 and 500 MHz spectrometers. Chemical shifts (δ) were reported in ppm referenced to the CDCl_{3} residual peak ($\delta 7.26$) or the DMSO-d d_{6} residual peak ($\delta 2.50$) for ${ }^{1} \mathrm{H}$ NMR. Chemical shifts of ${ }^{13} \mathrm{C}$ NMR were reported relative to $\mathrm{CDCl}_{3}(\delta 77.0)$ or D_{6}-DMSO ($\delta 39.5$). The following abbreviations were used to describe peak splitting patterns when appropriate: $\mathrm{br} \mathrm{s}=$ broad singlet, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet. Coupling constant, J, was reported in Hertz unit (Hz). Melting points (mp) were taken on a MEL-TEMP ${ }^{\circledR}$ apparatus and were uncorrected. High resolution mass spectra (HRMS) were obtained on an ESI-LC-MS/MS spectrometer.

2. Synthesis of isocyanides

2.1 Synthesis of phenyl isocyanides $\mathbf{1 a - 1 w}$

The isocyanide 1a was prepared according to the reported method. ${ }^{1}$

4-Methyl-2-(phenyl)phenyl isocyanide (1a). To an oven-dried three necked flask, 2-bromo-4-methylaniline $\mathbf{S 1}(925 \mathrm{mg}, 5 \mathrm{mmol})$, phenylboronic acid ($732 \mathrm{mg}, 6 \mathrm{mmol}$), aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{M}, 11 \mathrm{~mL})$ and DME (10 mL) were added under a gentle stream of Ar , and the mixture was stirred for 30 min at room temperature under Ar atmosphere. $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(70 \mathrm{mg}, 0.10 \mathrm{mmol})$ was subsequently added at room temperature, and the mixture was stirred overnight at $80^{\circ} \mathrm{C}$ under Ar. The reaction mixture was cooled to room temperature and diluted with EtOAc. The organic layer was washed with water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removing the volatiles in vacuo, the residue was subjected to column chromatography on silica gel (petroleum ether/EtOAc $=4: 1$) to afford 4-methyl-2-phenylaniline $\mathbf{S 2}(788 \mathrm{mg}, 86 \%$ yield).
Acetic formic anhydride (0.89 mL) was added dropwise to a stirred solution of $\mathbf{S 2}$ ($788 \mathrm{mg}, 4.30 \mathrm{mmol}$) in THF $(8 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and then the mixture was stirred for 2 h
at room temperature. the mixture was quenched by sat. aqueous solution of NaHCO_{3} and extracted with EtOAc three times. The extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give formamide $\mathbf{S 3}$ as a pale yellow oil. This material was used for the subsequent dehydration without further purification.
To an oven-dried three necked flask equipped with a dropping funnel, THF (8 mL), $\mathrm{NEt}_{3}(4.3 \mathrm{~mL})$ and the whole amount of $\mathbf{S 3}$ obtained above were added under Ar atmosphere and cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{POCl}_{3}(0.7 \mathrm{~mL})$ in 2 mL of THF was added dropwise, and the mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ until the addition was complete. The mixture was slowly quenched by sat. aqueous solution of NaHCO_{3} at $0^{\circ} \mathrm{C}$ and stirred for 1 h at room temperature. The mixture was extracted with EtOAc three times, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The residues were purified by column chromatography (petroleum ether/EtOAc $=30: 1$) to give $\mathbf{1 a}$ as a pale yellow solid ($811 \mathrm{mg}, 84 \%$ yield).
$\mathbf{1 b} \mathbf{- 1 w}$ were prepared according to the procedure described for $\mathbf{1 a}$.

2.2 Synthesis of vinyl isocyanides $4 \mathrm{a}-4 \mathrm{e}^{2}$

To a mixture of benzophenone $\mathbf{S 4}(0.91 \mathrm{~g}, 5 \mathrm{mmol})$ and methyl isocyanoacetate $\mathbf{S 5}$ ($0.5 \mathrm{~g}, 5 \mathrm{mmol}$) in THF (5 mL), a suspension of NaH (60% in oil) ($0.24 \mathrm{~g}, 6 \mathrm{mmol}$) in THF (5 ml) was added dropwise at room temperature for 2 h . After the reaction was completed (as judged by TLC analysis), the solvent was removed under reduced pressure and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times and the extract was washed with $\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The material $\mathbf{S 6}$ was used for the subsequent dehydration without further purification.

To an oven-dried three necked flask equipped with a dropping funnel, THF (10 mL), $\mathrm{NEt}_{3}(5 \mathrm{~mL})$ and the whole amount of $\mathbf{S 6}$ obtained above were added under Ar atmosphere and cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{POCl}_{3}(0.8 \mathrm{~mL})$ in 2 mL of THF was added dropwise, and the mixture was stirred for 2 h at $0{ }^{\circ} \mathrm{C}$ until the addition was complete. the mixture was slowly quenched by sat. aqueous solution of NaHCO_{3} at $0^{\circ} \mathrm{C}$ and stirred for 1 h at room temperature. The mixture was extracted with EtOAc three times, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The residues were purified by column chromatography (petroleum ether/EtOAc $=30: 1$) to give $\mathbf{4 a}$ as a white solid
($1.2 \mathrm{~g}, 89 \%$ yield).
$\mathbf{4 b}-\mathbf{4 e}$ were prepared according to the procedure described for $\mathbf{4 a}$.

3. Synthesis of material 6^{3}

a 100 mL round-bottom flask was equipped with a rubber septum and magnetic stir bar and was charged with a solution of 2-formylphenylboronic acid ($950 \mathrm{mg}, 5 \mathrm{mmol}$) and allyl bromide ($0.5 \mathrm{~mL}, 6 \mathrm{mmol}$) in THF (25 mL). Then $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(88 \mathrm{mg}$, $0.125 \mathrm{mmol})$ and aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(1 \mathrm{M}, 10 \mathrm{mmol})$ solution was added. The reaction mixture was heated at reflux for 3-4 h. The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, dried over MgSO_{4}, and concentrated in vacuo. The residues were purified by column chromatography on silica gel (petroleum ether/EtOAc $=30: 1$) to afford the desired product 6 (82% yield) as a pale yellow oil.

4. General procedure and product characterization

4.1 General procedure

Typical procedure for PIDA-mediated oxidative phenyl isocyanides insertion with aromatic aldehydes to 6 -aroylated phenanthridines 3a-3w.

A oven-dried sealed tube was equipped with a magnetic stir bar and was charged with a mixture of 2-isocyanobiphenyl (0.2 mmol), aldehyde (1.2 mmol) and $\mathrm{TMSN}_{3}(0.5$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$. Then (diacetoxyiodo)benzene (PIDA) $(0.5 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and added dropwise to the reaction mixture for 10
minutes at $50^{\circ} \mathrm{C}$. After the reaction was complete (as determined by TLC analysis), the reaction was cooled to room temperature and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added to the solution and washed with water ($20 \mathrm{ml} \times 3$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (petroleum ether/EtOAc $=30: 1$) to afford the targeted product $\mathbf{3 a - 3 w}$.

Typical procedure for PIDA-mediated oxidative vinyl isocyanides insertion with aromatic aldehydes to 1-aroylated isoquinolines 5a-5e.

A oven-dried sealed tube was equipped with a magnetic stir bar and was charged with a mixture of vinyl isocyanide (0.2 mmol), aldehyde (1.2 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.4 \mathrm{mmol})$ and $\mathrm{TMSN}_{3}(0.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$. Then (diacetoxyiodo)benzene (PIDA) (0.5 mmol) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and added dropwise to the reaction mixture for 10 minutes at $50^{\circ} \mathrm{C}$. After the reaction was complete (as determined by TLC analysis), the reaction was cooled to room temperature and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added to the solution and washed with water ($20 \mathrm{ml} \times 3$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (petroleum ether/EtOAc $=30: 1$) to afford the targeted product 5a-5e.

Typical procedure for PIDA-mediated oxidative phenyl isocyanide insertion with aromatic aldehyde bearing ortho terminal alkene $\mathbf{6}$ to phenanthridine derivative 7 .

A oven-dried sealed tube was equipped with a magnetic stir bar and was charged with a mixture of 2-isocyanobiphenyl $\mathbf{1 a}(0.2 \mathrm{mmol})$, aldehyde $\mathbf{6}(1.2 \mathrm{mmol})$ and TMSN_{3} (0.5 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL}$). Then (diacetoxyiodo)benzene (PIDA) (0.5 mmol)
was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and added dropwise to the reaction mixture for 10 minutes at $50^{\circ} \mathrm{C}$. After the reaction was complete (as determined by TLC analysis), the reaction was cooled to room temperature and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added to the solution and washed with water ($20 \mathrm{ml} \times 3$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (petroleum ether/EtOAc $=30: 1$) to afford the targeted product 7 .

4.2 Product characterization

(2-methylphenanthridin-6-yl)(phenyl)methanone (3a) ${ }^{4}$

Yield: 74%. Mp 171-173 ${ }^{\circ} \mathrm{C}$. Pale yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.70$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.16-8.09(\mathrm{~m}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.48(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 194.9,156.4,140.9,138.3,136.3,133.8,133.0,131.0,130.8$, 130.4, 128.5, 127.6, 127.2, 124.3, 124.0, 122.2, 121.7, 22.1; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$, 298.1193; Found: 298.1190.
(2-methylphenanthridin-6-yl)(p-tolyl)methanone (3b) ${ }^{4 \mathrm{a}}$

Yield: 66%. Mp 170-172 ${ }^{\circ} \mathrm{C}$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.70(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 194.6,156.8,144.9,141.0,138.2,133.9,133.0,130.9$, 129.3, 127.6, 127.3, 124.3, 123.9, 122.2, 121.7, 22.1, 21.8; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}, 312.1383$; Found: 312.1385.
(4-ethylphenyl)(2-methylphenanthridin-6-yl)methanone (3c)

Yield: 63%. Mp $129-131{ }^{\circ} \mathrm{C}$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.70(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.75-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.67$ $(\mathrm{s}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.5,157.2,141.3$, 140.2, 138.3, 137.0, 133.2, 132.4, 132.0, 131.8, 130.7, 130.6, 127.6, 127.4, 125.4, 124.5, 124.1, 122.2, 121.6, 29.1, 22.1, 15.1; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}, 326.1539$; Found: 326.1539.
(4-methoxyphenyl)(2-methylphenanthridin-6-yl)methanone (3d) ${ }^{\text {4a }}$

Yield: 76%. Mp 142-144 ${ }^{\circ} \mathrm{C}$. White solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.70(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 193.6,164.4,157.1,141.1,138.2,133.3,133.1,131.0$, $130.9,130.4,129.5,127.6,127.5,124.4,124.0,122.3,121.8,113.9,55.6,22.2 ;$ HRMS (ESI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 328.1332$; Found: 328.1331. (4-fluorophenyl)(2-methylphenanthridin-6-yl)methanone (3e) ${ }^{\text {4a }}$

Yield: 49%. Mp $188-190{ }^{\circ} \mathrm{C}$. White solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.71$ (d, $J=$
$8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.14-8.09(\mathrm{~m}, 3 \mathrm{H}), 7.92-7.87(\mathrm{~m}$, $1 \mathrm{H}), 7.70-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 193.2,168.0,164.6,155.9,140.9,138.6,133.7,133.6,133.1,132.8,132.7$, $131.1,130.9,130.4,127.7,127.2,124.4,123.9,122.3,121.8,115.9,115.6,22.2$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{FNO}[\mathrm{M}+\mathrm{H}]^{+}, 316.1132$; Found: 316.1129. (4-chlorophenyl)(2-methylphenanthridin-6-yl)methanone (3f) ${ }^{\text {4a }}$

Yield: 45%. Mp $216-218{ }^{\circ} \mathrm{C}$. White solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.72(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.04-8.00$ $(\mathrm{m}, 2 \mathrm{H}), 7.93-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 193.5,155.6,140.8,140.4,138.7,134.7,133.1,132.3$, $131.1,131.0,130.4,128.9,127.8,127.2,124.5,123.9,122.3,121.8,22.2$.
(2-methylphenanthridin-6-yl)(4-(trifluoromethyl)phenyl)methanone (3g)

Yield: 13%. Pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $8.47(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.96-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.79-7.63(\mathrm{~m}, 4 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 193.5,154.9,140.8,139.3,139.0,133.2,131.2,131.0,130.5,129.2,127.9,127.1$, 125.5, 125.4, 124.6, 123.9, 122.4, 121.8, 22.2; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$, 366.1025; Found: 366.1029.
(2-methylphenanthridin-6-yl)(o-tolyl)methanone (3h) ${ }^{4 \mathrm{a}}$

Yield: 50%. Mp $126-128{ }^{\circ} \mathrm{C}$. White solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.70(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~s}$, 6 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 197.5, 157.2, 141.3, 140.2, 138.3, 137.0, 133.2, 132.4, 132.0, 131.8, 130.7, 130.6, 127.6, 127.4, 125.4, 124.5, 124.1, 122.2, 121.6, 21.9, 21.4; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}, 312.1385$; Found: 312.1384.
(2-(tert-butyl)phenyl)(2-methylphenanthridin-6-yl)methanone (3i)

Yield: 35%. Pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $8.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~s}, 1 \mathrm{H}), 7.99-7.77(\mathrm{~m}, 3 \mathrm{H}), 7.66(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.56-7.53 (m, 1H), 7.47-7.42 (m, 1H), $7.20(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 201.5,154.3,149.1,140.9,140.8,139.3,133.2$, 131.2, 130.6, 129.4, 128.9, 128.1, 127.6, 127.5, 124.9, 124.6, 124.5, 122.1, 121.6, 36.4, 32.3, 22.2; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}, 354.1852$; Found: 354.1859.

(2,6-dimethylphenyl)(2-methylphenanthridin-6-yl)methanone (3j)

Yield: 51%. Mp 101-103 ${ }^{\circ} \mathrm{C}$. White solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.05$ (d, $J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.36$ ($\mathrm{s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{t}, J$
$=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.4,153.8,142.2,141.5,139.6,135.2,133.7,131.6,130.7,128.9,128.3,127.9$, 127.7, 125.4, 124.0, 122.4, 121.8, 22.3, 20.0; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}, 326.1539$; Found: 326.1540.
(2-methylphenanthridin-6-yl)(m-tolyl)methanone (3k) ${ }^{\text {4a }}$

Yield: 42%. Mp $124-126^{\circ} \mathrm{C}$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.71$ (d, J $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.68(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 195.2,156.8,141.0,138.4$, $138.3,136.4,134.8,133.0,131.1,131.0,130.8,130.4,128.5,127.6,127.3,124.3$, 124.0, 122.3, 121.8, 22.1, 21.3; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+}, 312.1383$; Found: 312.1384.
(3-methoxyphenyl)(2-methylphenanthridin-6-yl)methanone (31)

Yield: 52%. Mp $148-150{ }^{\circ} \mathrm{C}$. White solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.70(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.43$ (s, 1H), 8.12 (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.60$ $(\mathrm{m}, 3 \mathrm{H}), 7.50(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.85(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 194.7,160.2,156.8,141.5$, 138.5, 138.3, 133.4, 131.1, 130.8, 129.7, 127.8, 127.6, 124.7, 124.3, 124.2, 122.5, 120.8, 114.9, 55.7, 22.2; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$, 328.1332; Found: 328.1332.
(8-(tert-butyl)-2-methylphenanthridin-6-yl)(4-methoxyphenyl)methanone (3m)

Yield: 47%. Mp $128-130{ }^{\circ} \mathrm{C}$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.62(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.66$ $(\mathrm{s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 193.8,164.2,156.9,150.7$, $140.8,138.0,133.2,130.9,130.4,130.2,129.6,129.4,124.3,124.0,122.8,122.0$, 121.6, 113.8, 55.5, 35.0, 31.1, 22.1; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}, 384.1958$; Found: 384.1960.
(8-methoxy-2-methylphenanthridin-6-yl)(4-methoxyphenyl)methanone (3n)

Yield: 62\%. Mp $185-187{ }^{\circ} \mathrm{C}$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.59(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 8.08-8.01(\mathrm{~m}, 3 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 193.6,164.2,158.8$, $155.6,140.2,138.3,133.3,132.2,130.2,129.8,129.4,127.5,125.3,124.5,123.8$, 122.2, 121.2, 113.8, 106.7 55.5, 22.1; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}, 358.1438$; Found: 358.1436.
(8-(benzyloxy)-2-methylphenanthridin-6-yl)(4-methoxyphenyl)methanone (30)

Yield: 76%. Mp $189-191{ }^{\circ} \mathrm{C}$. White solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.61$ (d, $J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.34$ (s, 1H), 8.07 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.01 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.61 (s, $1 \mathrm{H}), 7.55(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 193.7, 164.5, 158.3, 156.1, 140.8, 138.4, 136.7, 133.4, 130.7, 130.1, 130.0, 128.8, 128.3, 128.0, 127.9, 125.6, 124.8, 124.1, 122.6, 121.4, 114.1, 108.9, 70.8, 55.7, 22.2; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 434.1751$; Found: 434.1752.

(8-fluoro-2-methylphenanthridin-6-yl)(4-methoxyphenyl)methanone (3p)

Yield: 87%. Mp 176-178 ${ }^{\circ} \mathrm{C}$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.70-8.67$ (m, 1H), 8.36 ($\mathrm{s}, 1 \mathrm{H}$), $8.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 192.6, 164.4, 162.8, 160.3, 155.7, 140.8, 138.7, $133.2,130.6,130.5,129.8,129.6,125.2,124.7,124.6,124.1,121.4,120.2,119.9$, 113.9, 112.1, 111.9, 55.4, 21.9; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{FNO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}, 346.1238$; Found: 346.1240.
(4-methoxyphenyl)(2-methyl-8-(trifluoromethyl)phenanthridin-6-yl)methanone (3q)

Yield: 62%. Mp 201-203 ${ }^{\circ} \mathrm{C}$. White solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.81(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $3 \mathrm{H}), 7.69(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 192.6,164.6,156.3,141.6,139.2,133.5,132.1,130.7$, 129.2, 126.8, 126.7,125.1, 125.0, 123.5, 123.4, 122.2, 114.0, 55.7, 22.2; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 396.1206$; Found: 396.1206.
(2,7-dimethylphenanthridin-6-yl)(4-methoxyphenyl)methanone (3r) and (2,9-dimethyl- phenanthridin-6-yl)(4-methoxyphenyl)methanone (3r')

3r

$3 r^{\prime}$

Yield: $\mathbf{3 r}=36 \%, \mathbf{3 r}{ }^{\mathbf{\prime}}=\mathbf{2 0 \%}$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.61(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 0.64 \mathrm{H}), 8.45(\mathrm{~s}, 0.36 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.09-7.94(\mathrm{~m}, 3 \mathrm{H}), 7.75(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $0.64 \mathrm{H}), 7.58(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.87(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~s}, 4 \mathrm{H}), 2.54(\mathrm{~s}, 1.8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 195.2$, 164.8, 164.7, 157.7, 141.3, 138.2, 136.7, 134.7, 133.6, 133.3, 131.1, 131.0, 130.9, $130.5,130.3,129.7,127.8,124.9,122.4,122.3,122.1,120.9,114.5,114.4,55.9,32.0$, 24.1, 23.0, 22.4, 22.3.
(4-methoxyphenyl)(10-methylphenanthridin-6-yl)methanone (3s)

Yield: 44%. Mp 143-145 ${ }^{\circ} \mathrm{C}$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.68$ (s, $1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.69(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$, $3.18(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 193.9,164.3,158.1,142.6$, $136.9,135.5,135.0,133.0,130.7,129.8,129.7,126.9,126.4,126.0,125.8,125.5$, 113.9, 55.4, 26.7, 22.3; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$, 342.1489; Found: 342.1487.
(4-methoxyphenyl)(phenanthridin-6-yl)methanone (3t)

Yield: 66%. Mp $162-164{ }^{\circ} \mathrm{C}$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.72(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 193.4, 164.3, 158.0, 142.7, 133.3, 133.2, 131.2, 130.6, 129.2, 129.0, 128.0, 127.7, 127.4, 124.4, 123.8, 122.2, 122.1, 113.9, 55.5; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$, 314.1176; Found: 314.1179.
(4-methoxyphenyl)(3-methylphenanthridin-6-yl)methanone (3u)

Yield: 62%. Mp $143-145{ }^{\circ} \mathrm{C}$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.66(\mathrm{~d}, J$
$=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}), 7.86(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.57(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$, $2.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 193.5,164.3,157.9,142.8,139.3,133.3$, $133.2,131.1,130.1,129.7,129.3,127.4,127.2,123.5,122.1,122.0,121.9,113.8$, 55.5, 21.5; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 328.1332$; Found: 328.1334.
(3-chlorophenanthridin-6-yl)(4-methoxyphenyl)methanone (3v)

Yield: 75%. Mp $162-164{ }^{\circ} \mathrm{C}$. Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.65(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.65(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 3.88 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 193.0,164.8,159.4,143.9,135.1,133.3$, 131.7, 130.1, 129.7, 128.7, 128.1, 128.0, 124.2, 123.7, 123.2, 122.4, 114.2, 55.7; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$, 348.0784; Found: 348.0786.
(4-methoxyphenyl)(2-(trifluoromethyl)phenanthridin-6-yl)methanone (3w)

Yield: 81%. Mp 184-186 ${ }^{\circ} \mathrm{C}$. White solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.92(\mathrm{~s}, 1 \mathrm{H})$, $8.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.95$ (m, 4H), $7.73(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 192.9,164.6,160.2,144.2,133.1,133.0,131.9,131.5,128.8$, 127.8, 125.0, 124.0, 122.3, 120.0, 119.9, 114.0, 55.6; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$, 382.1049; Found: 382.1050.
methyl 1-(4-methoxybenzoyl)-4-phenylisoquinoline-3-carboxylate (5a)

Yield: 48%. Mp $165-167{ }^{\circ} \mathrm{C}$. White solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.24-8.20$ $(\mathrm{m}, 1 \mathrm{H}), 8.10-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.55(\mathrm{t}, J=5.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.46-7.41(\mathrm{~m}$, $2 \mathrm{H}), 7.02-6.97(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $192.5,167.2,164.4,156.5,140.6,136.4,135.6,134.9,133.4,131.2,129.7,129.3$, 129.2, 128.3, 126.8, 126.5, 126.4, 113.9, 55.6, 52.5; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$, 398.1392; Found: 398.1394 .
methyl 1-(4-methoxybenzoyl)-7-methyl-4-(p-tolyl)isoquinoline-3-carboxylate (5b)

Yield: 46%. Mp $132-134{ }^{\circ} \mathrm{C}$. Pale yellow Solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.07-$ $8.03(\mathrm{~m}, 2 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-$ $7.28(\mathrm{~m}, 4 \mathrm{H}), 6.98(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 192.7,167.3,164.3,155.5,139.8,139.6,137.9,135.1$, $134.8,133.4,132.7,129.5,129.3,129.0,126.8,126.7,125.1,113.9,55.6,52.4,21.9$, 21.4; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}, 426.1705$; Found: 426.1715.

Methyl 7-fluoro-4-(4-fluorophenyl)-1-(4-methoxybenzoyl)isoquinoline-3carboxylate (5c)

Yield: 42%. Mp $148-150{ }^{\circ} \mathrm{C}$. White solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.09-8.05$
$(\mathrm{m}, 2 \mathrm{H}), 7.92(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.41-$ $7.36(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 191.7,166.8,164.5,163.8,161.2,160.5,155.5,140.2$, $140.1,134.2,133.7,133.5,131.4,131.3,131.1,129.7,129.6,128.9,127.9,127.7$, 122.1, 121.7, 115.8, 115.5, 113.9, 110.5, 110.2, 55.6, 52.6; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}, ~ 434.1204$; Found: 434.1205.
methyl 7-chloro-4-(4-chlorophenyl)-1-(4-methoxybenzoyl)isoquinoline-3carboxylate(5d)

Yield: 61%. Mp 137-138 ${ }^{\circ} \mathrm{C}$. Pale yellow solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.27$ (s, $1 \mathrm{H}), 8.04(\mathrm{t}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{t}, J=3.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.32$ (m, 2H), 7.02-6.98 (m, 2H), $3.92(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 191.6, 166.6, 164.5, 155.6, 140.5, 135.8, 134.8, 134.7, 133.9, 133.5, 132.4, 130.9, 128.9, 128.8, 128.3, 127.2, 125.5, 114.0, 55.6, 52.7; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}, 466.0613$, Found: 466.0618; $[\mathrm{M}+2+\mathrm{H}]^{+}, 468.0305$, Found: 468.0309; $[\mathrm{M}+4+\mathrm{H}]^{+}, 470.0125$, Found: 470.0122.
methyl 1-(4-methoxybenzoyl)-4-methylisoquinoline-3-carboxylate (5e)

Yield: 41%. Mp 130-132 ${ }^{\circ} \mathrm{C}$. Pale yellow solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.25-$ $8.14(\mathrm{~m}, 2 \mathrm{H}), 8.00-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.86-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.64(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.92(\mathrm{~m}$, 2H), $3.98(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 192.6$, 167.7, 164.2, 155.0, 140.3, 136.6, 133.4, 131.1, 130.9, 129.4, 129.0, 126.9, 126.3, 124.5, 113.8, 55.5, 52.7, 14.6; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$, 336.1236; Found: 336.1233.

2-((2-methylphenanthridin-6-yl)methyl)-2,3-dihydro-1H-inden-1-one (7)

Yield: 48%. mp 172-174 ${ }^{\circ} \mathrm{C}$. yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.71(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.39(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.10-2.02(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 197.6, 156.9, 143.3, 141.0, 138.5, 136.5, 133.0, 132.4, 131.3, 130.9, 130.8, 130.5, $127.8,127.2,125.9,124.4,123.9,122.2,121.7,51.1,31.5,30.6,22.1 ;$ HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}, 338.1501$; Found: 338.1502.

5. Free-Radical inhibition experiment

An oven-dried sealed tube was equipped with a magnetic stir bar and was charged with a mixture of 2-isocyanobiphenyl 1a (0.2 mmol), benzaldehyde $\mathbf{2 a}(1.2 \mathrm{mmol})$, TEMPO (0.5 mmol) and $\mathrm{TMSN}_{3}(0.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$. Then (diacetoxyiodo)benzene (PIDA) (0.5 mmol) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and added dropwise to the reaction mixture for 10 minutes at $50^{\circ} \mathrm{C}$. After stirring for 5 minutes, the reaction was monitored by TLC analyst and almost no the targeted product 3a was observed along with a great material 1a remained.

6. References

(1) (a) M. Tobisu, K. Koh, T. Furukawa, N. Chatani, Angew. Chem., Int. Ed., 2012, 51, 11363; (b) B. Zhang, C. Mück-Lichtenfeld, C. G. Daniliuc, A. Studer, Angew. Chem., Int. Ed., 2013, 52, 10792; (c) D. Leifert, C. G. Daniliuc, A. Studer, Org. Lett., 2013, 15, 6286; (d) X. Sun, S. Yu, Org. Lett., 2014, 16, 2938; (e) B. Zhang, C. G. Daniliuc, A. Studer, Org. Lett., 2014, 16, 250; (f) J. Liu, C. Fan, H. Yin, C. Qin, G. Zhang, X. Zhang, H. Yi, A. Lei, Chem. Commun., 2014, 50, 2145; (g) X. Li, M. Fang, P. Hu, G. Hong, Y. Tang, X. Xu, Adv. Synth. Catal., 2014, 356, 2103.
(2) (a) Y. Cheng, X. Yuan, H. Jiang, R. Wang, J. Ma, Y. Zhang, S. Yu, Adv. Synth. Catal., 2014, 356, 2859; (b) J. Li, Y. He, S. Luo, J. Lei, J. Wang, Z. Xie, Q. Zhu, J. Org. Chem., 2015, 80, 2223.
(3) A. R. Jagdale, J. H. Park, S. W. Youn, J. Org. Chem., 2011, 76, 7204.
(4) (a) D. Leifert, C. G. Daniliuc, A. Studer, Org. Lett., 2013, 15, 6286; (b) J. Liu, C. Fan, H. Yin, C. Qin, G. Zhang, X. Zhang, H. Yi, A. Lei, Chem. Commun., 2014, 50, 2145.

7. Copies of ${ }^{\mathbf{1}} \mathbf{H}$ NMR and ${ }^{13} \mathbf{C}$ NMR spectra

(

[^0]

$3 f$

$\stackrel{\infty}{\underset{\sim}{\pi}}$

$3 f$

$\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$ f1 (ppm)

3 g

-193.52

3g
$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \begin{array}{c}100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

312541
BRUKER

312771
BRUKER

BCLUKER

5a

$\begin{aligned} & \text { A } \\ & \stackrel{1}{4} \end{aligned}$	

5a

$\begin{array}{llllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

5d

5d
$\begin{array}{lllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & \begin{array}{c}120 \\ \text { fl } \\ 110 \\ (\mathrm{ppm})\end{array} & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

5 e

$\stackrel{\square}{\underset{i}{1}}$

5 e

[^1]

[^0]: $\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$ f1 (ppm)

[^1]: $\begin{array}{llllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

