Sensitive determination of trace Cd(II) and Pb(II) in soil by an improved stripping voltammetry method using two different in-situ plated bismuth-film electrodes based on a novel electrochemical measurement system

Guo Zhao^{a,b}, Hui Wang^{a,b}, Gang Liu^{a,b,*}

^aKey Lab of Modern Precision Agriculture System Integration Research, Ministry of Education of China, China Agricultural University, Beijing 100083 P.R. China
^bKey Lab of Agricultural Information Acquisition Technology, Ministry of Agricultural of China, China Agricultural University, Beijing 100083 P.R. China

*Corresponding author: Tel.: +86 010 62736741; fax: +86 010 62736741.

E-mail address: pac@cau.edu.cn (G. Liu)

Fig. S1. Micro-electrolytic cell with (A) the first combined electrode composed of the GCPE working electrode, a Ag/AgCl reference electrode and a Pt-wire counter electrode and (B) the second combined electrode composed of the MWCNT-Nafion/GCE working electrode, a Ag/AgCl reference electrode and a Pt-wire counter electrode.

Fig. S2. (a) SWASV of 20 μ g/L Cd(II) and Pb(II) in 20 mL of acetate buffer solution (0.1 M, pH 4.5) at the GCE and Bi/GCE. (b) Stripping current measurements of 20 μ g/L Cd(II) and Pb(II) on the Bi/GCE in 0.1 M acetate buffer solution (pH 5.0). The insets correspond to data collected from every SWASV response over eight repetitions. RSD: relative standard deviation; deposition time: 140 s; deposition potential: -1.2 V; Bi(III) concentration: 600 μ g/L.

Fig. S1.

