Enhanced electrochemical properties of cerium metal-organic framework based composite electrodes for high-performance supercapacitor application

Rajendran Ramachandran^{a,b}, Wenlu Xuan^a, Changhui Zhao^{a,b}, Xiaohui Leng^{a,b}, Dazhi Sun^c, Dan Luo^a, and Fei Wang^{a,b,d*}

^aDepartment of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

^bShenzhen Key Laboratory of 3rd Generation Semiconductor Devices, Shenzhen 518055, China.

^cDepartment of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

^d State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.

* To whom correspondence should be addressed:

E-mail: wangf@sustc.edu.cn, Tel: (+86) 755-88018509

Fig. S1. FTIR spectrum of Graphene oxide

Fig. S2. EDS mapping images of Ce-MOF/GO composite

Fig. S3. EDS mapping images of Ce-MOF/CNT composite

Before 5000 cycles

Fig. S4. SEM images of electrodes before and after 5000 cycles in 3M KOH electrolyte (a) Ce-MOF (b) Ce-MOF/GO and (c) Ce-MOF/CNT.