Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Preparation of magnesium silicate/carbon composite for adsorption of rhodamine B

Zhiwei Sun, ab Xinhui Duanab, C. Srinivasakannanc and Jinsheng Liang*ab

^aKey Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin 300130, China.

^bInstitute of Power Source and Ecomaterials Science, Hebei University of Technology,

Tianjin 300130, China.

^cChemical Engineering Department, Khalifa University of Science and Technology

The petroleum Institute, Abu Dhabi, UAE

Exploratory experiment

The composite without adding sodium acetate was prepared in the early exploring experiments. The adsorption result showed that the adsorption properties of this composite for rhodamine B improved only 6.41% than magnesium silicate. In other words, the improved effect is not obvious. The adsorption capacity significantly improved by adding sodium acetate into the raw materials.

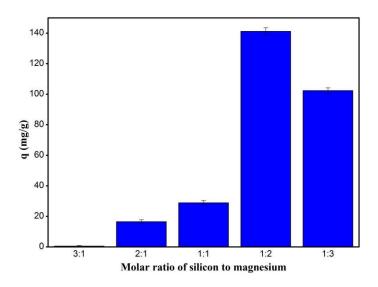


Fig. S1 Effects of Si/Mg molar ratio on the adsorption of RhB

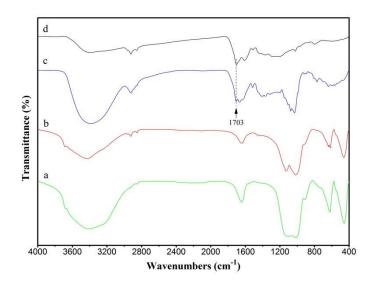


Fig. S2 FT-IR spectra of magnesium silicate (a), magnesium silicate added with sodium acetate (b), glucose hydrothermal carbon (c) and glucose hydrothermal carbon added with sodium acetate (d)