Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Figure S1. A) Human DPP III enzyme sequence coverage map covering 93.7% of the entire sequence with 77 peptic peptides. B) Elements of secondary structure for which hydrogen deuterium kinetics is discussed are shown mapped onto 3D structure of the unliganded human DPP III enzyme (PDB accession number 3FVY).

Figure S2. Deuterium uptake correlation for all unliganded hDPP III peptides at all time periods between experimental values and values estimated by MD based H-bond statistics as described in Park et al. (I.-H. Park, J. D. Venable, C. Steckler, S. E. Cellitti, S. A. Lesley, G. Spraggon and A. Brock, *Journal of Chemical Information and Modeling*, 2015, **55**, 1914-1925.)

Ca/1-558 Pp/1-770 Pg/1-886 Bt/1-675 h/1-737 y/1-711	12 161 1 9 1	QD	ΥEI	AV	R K	ED	S S	YV	P C	DV	DC) G '	Y S	VF AL	L G	A 1	I A L R A S	C Q R R C G	G I	KE SV AK	EN DT TK TT	K S T T	TE AK TT AE	MV LE QH AD MA	KI EI KI M	L K L Q S G F D F D F D F D F D F D	RM MH ER YT YI FF		A Q N R A R E Q P N D H	FA FA DI DA	P P D I D I G V P I	E		YD GE GYI C GVI	R A K V - R K T	D L P E E A E Y	H S T T F G F E F R F P	L L G L T L L L Q L	DI SI TI SI SI	R R R R G R P K O P K O P T I D K I	KQI QRI QRI ER EQI	KV LA EL LY KY	VE LS CY VY AY AH	N L D T H L Y L F M	F 6 I 2 S 4 S 3 S 3	i3 136 15 19 18 17
Ca/1-558 Pp/1-770 Pg/1-886 Bt/1-675 h/1-737 y/1-711	64 237 46 60 39 38	RA RA EA QA RA KA	AKI ALF ALF AWY SHA	MD GR GR GG GS	EI RI DI LA RV	FL FL TT LF VL	DQ EQ IQ LQ RQ	VY EW NC NG TS VS	SK AT RY FE HE	N F N P N L N L S E	E I A I W R I Y I P I	R I R I R I F I	E Q D S L S L R M A L D L	LR LQ ME LE LS L	AS AA RI AV RI AI	S S Y F I H	G K T H T N R A S K	D P S E L S Y K Q D L N	L] [[] [] [] []	DQ DR SE DK DQ K-	L - R - S - L R Y P	QI	ΗA	L A	EOD	G L I T	- T - A TE QK	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	R L K F D F E Y Q T	E - A - K N Q A G L	YFY YF LE ME FL	T E V E		FG KS FC KR AG SQ	PF W IW VW FL	DR SI FA SN SN	L N L D N G M G L G	H C E N I H I H N Y N F	OKI IDA IHI KS KS	P F F F F F F	IG LT SG. GMI GD GD	A K E K T K T K	F I F V F V F I	- N - T AR PG PN PN PR	- 1 A 2 F 1 F 1 L 1 C 1	.22 98 .15 .29 .18
Ca/1-558 Pp/1-770 Pg/1-886 Bt/1-675 h/1-737 y/1-711	123 299 116 130 119 114	DS SP(SQI PKI EVI	GFI DFI EKI KFF	R A KQ E R KQ	AL AV VI LL	R E L G L G E L	A G T D S E A K	V E A Q I N	 P C	 S S	A I A A P I	Q - 1 - 1 Q Q - 1	I A L E L L Q H L S	E G P E P L P E P V	E Q S E D V	Q V G V . V .		 F T	- - (- 1 'S 1	Q T Q G H H	A E L W	Q 1 /Q ' S '	A V L C T C T I	DE - L DE GE NE		V T E R F P I D	V - V - I G	- V L ' MI MI	WG YD FD FS YH	G K T D P A L E V E	VR FL IL PR EM	P I A I L I	Q (Q (R) (R) (R)	ΓE /N	- R Q S Q A - L - L	A A G E D G	F P E D E D - G - G	T P VE I I L V F P	KI KI KI SKI	PK AP AS IS 3G QG	GA GA SV AC I T T	N F N F N F N Y S A	Y P Y P Y A Y - F Y Y	P DI V DI P G D G S G I L G		.36 940 .74 .95 .75
Ca/1-558 Pp/1-770 Pg/1-886 Bt/1-675 h/1-737 y/1-711	137 341 175 196 176 188	 ₽ ♥	TRE DKE TRA TQQ TME TPE	E A E A D A D A	E S E S KL A L	HY FY AQ LK	KN GA - D EQ	LI M- FL LF	E - DS AE	Q N L A		5 A 1	 Y N E N	TR TR	A L L F I -	, KI KI	E N D P E V	E K KD D G N K	- 	C P C P G K G E	- E - E P S V S P Y N S		EN QA GL GL V QI	WL WH N I N S R L WV	KA DO RI AS	AH GL LV SV SE	PE DK LG	D1 (G0 	E A. Q Q E -	AF AD PS N	- 1 L D V H	SI R K SI	F F QI	r∨ r⊤ rsi rE	IR IR - S - E KL TY	R Q R S T S - D K S P S	D - G D G E G K G Q	I H I T	ID / VI	AD F SN	J A I	ΚV	GK HD LK IQ RG AV	LV LK DE EK SP TK		.71 186 19 135 144 253
Ca/1-558 Pp/1-770 Pg/1-886 Bt/1-675 h/1-737 y/1-711	172 387 220 236 245 254	IP VP CC WK QV EF	YSE SE DC VGC TRC IFC	YYY IEY LY LY DY D	KE AT GP TQ AP SR	Y L I L A I I L E M	TR KE E A QK RL	AA AS VV IV VV	DY YL AS YW EQ SY	L H L H L H L H L H L H	K A K A K A K A E A		E F D S P Y T V A Y K F	A D A E T E A E A A A A	n P N P N D N D	S S S S S S S S S S S S S S S S S S S	L K L K Q A Q K Q G K	KY RL AC AV QM AM		Q L R L S K A Q Q E	RA KA LC IJ YI YI		AF YY FY SF	LN LS RI T T T T			- D - D R L K D E A Q A	Y Y T H H	Y E D R D R K E	S D S D F C Y A G S A Q	LA IA IR IL RF KL		ID I IE I RI QI		DH - S DS GP SP	T I P L R I V I	EV DV DF ES ET	VI TI VN VN VN	G G G G G G	PYI PYI FTI FTI		YE YE YA YG YR YR	D K D G D P D P D P E P	L F L F - I - F - S		148 162 198 114 123
Ca/1-558 Pp/1-770 Pg/1-886 Bt/1-675 h/1-737 y/1-711	249 463 299 315 324 333	YK YK IH VK SR II	A A F A T F S V A S V S E F S E F	E A E A E G E S E S	FI LV LV FV	TL GI HM NF AV AI	R D R D Q D K D V N Q N	PV DE LD KA KE	ES AT AG AT MS RT	A H Q R R R H R A H	L P L P T F T F F S	K K K K K K K K K K K K K K K K K K K	F S S S S S S S S S S S S S S S S S S S	GY HN EH SN AS NN			ME FE FE LL FI	KN DN AH DH KE SL		P I P M P I P V P W P W	P D D D D A D K P P S K	A E R S T	Y K FR FE YE	N F S H K H K D K P	I) I) I) I) I) I) I) I) I) I) I) I) I) I	RG V- PH VK FL	SE TF GI GV TP P		PM PI AT AK FT FT		VQ IQ NV TA DV EV		F I L F F		G D G D G D G D G S G S	T K V - S - G - G -	AG KG YP IP IP	VQ PQ A1 A1	2 T 1 2 T 7 7 P 1 7 A 1 - 4		N N N N N	P P P P P	N D N D N A N A N Y N Y	BR DR DW NW DD D	353334	128 140 176 192 198
Ca/1-558 Pp/1-770 Pg/1-886 Bt/1-675 h/1-737 y/1-711	329 541 377 393 399 408	REA VKI RAI RAI RQ RLI	AK ER EH C HH C KI C	SK TA SK FK FK	KV MV SV SV NV NV	ML TI TI SL	K N K N G N G N G N	IHISITIT	EA QA DA A V SA	K F K F Y N A Y A A	D F D F H A K S	(L) (I) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	L K L L R G H G Q R S K	P - TG NG E - H -	 L Y F N - F	I I I E I E I C L	AE EF EF SF	KV VC IP VC I-	· L] -] -]	FA EA DE ND EE SQ	E Q E V E E D D E D	RI RI RI RI	P L G A R H Q R D L P I	V - V - V E I D Y I F E	L V Q V	- T HA YG WK YQ	FE FD DL GP SD		FF FF GE FD FE	NH TH LH LH VQ	T L T I T D T D V G		IE IE IE IE IE IE		HG LG LG LG LG	LG IG HG HG HG	PG PH SG SG SG SG	K N Q K K K	VI VI LI FV	L - I F F I F G I F G I F E I	VG DG VD DE F	R Q G D P D K G T D	A F G F	N F I N F I	- 4 - 4 - 4	196 149 165 172
Ca/1-558 Pp/1-770 Pg/1-886 Bt/1-675 h/1-737 y/1-711	397 610 450 466 473 482	QE	TVI NPF	N P L G	E T L D	G E G K	Q I P V	Q S S T	W Y Y Y	R S K V	- 1 - 8 	TT TT TT TT	V K V R WD WG	KE LE A SK SK		E E A C C C C C C C C C C C C C C C C C	TY VY HA YG IA LA	S S S A S T S T S S G P	ILIYF	BE BE BE BE BE BE	C K A K A R A R C R	A A A A A		L G F A F G I A		Y N Y F Y Y Y L E L	NL LH LA CL LT	D 1 D 1 H 1	- F - F P K P K P Q K K		E H D H E L E I I I I	G G G K F C	<pre> Y L L F F F F </pre>	P - P D P D E G H D	- P - R P D A E A D V E	EF SL AY AY A SQ	E K E N K A E D K	QI TN N- VI VI	Y Y I Y V - - - - - - - - - - - - - - - - - - -	7T 7S 7N AG	FL FL FY FY FY FT	A - KY: TF NM QM	ML LM VR AR	- G G NG NG AG AG	465555	48 61 500 516 551
Ca/1-558 Pp/1-770 Pg/1-886 Bt/1-675 h/1-737 y/1-711	449 662 501 517 552 562	MT MT LA LA	· · F QLV QLV LEF LE	- R - R R I Y T WN	T I S I KR P E P K	R F G E G N A F T G	GI GL EI NI KW		AH AH AH AH AH PH	G A G K MR MR MQ MQ	GN GQ NF AF	A I A I A I A I A I A I A I A I A I A I	VI LQ LI VI SI	FN AR AR LR MK	YI FI YV WV VI TF		E K E H E K E A K	GA GG AE GA ST	Υ (F (P) G)	QF S Y P G O K L V K N	AM VV TI FL	IS I EI TI KI	L V VIV L E	С - К - Т G - М	E I KI IN S	- D - H E G D G D G S T	P A P D K T K T R P N D	A1 G - 1 D1	HR - T AL YV AR FA	VK FS VI VR IK	V K V D K D L D	FI YI YI RS		- - - R K	SV TA	- R - R G H	DG QC AI QL PA EC	V R I A F G L E V H	D G G E R C		NK RL FE AE RR KH		TI TI RI VL VY	QA EAI KS KS KS KC	Q 5 K 7 S 5 T 6 S 6	10 22 74 90
Ca/1-558 Pp/1-770 Pg/1-886 Bt/1-675 h/1-737 y/1-711	511 723 575 591 632 641	G D G D G D G D G D G D	YMA KAG YTA FEG VAG	AE AE AR GR	N L A L A L T L A L K Y	LE LA VE VE FI	TY KY RY NY GY DR	AV AA AV AV AT ST	ES LT HV KV VT	E P PQ DP DP DA P.		(II)Q ,HI ,HI ?E (VIR SF A- CF DL	AR DA EV EV LT AS			QE VQ YA YK TV	L P KL KL L S	V D N R K	I A L A K E R L	P Y P Y S R P R	KOKI	- D - D G F G F L I Q F	I F V V V V V V V V V V V V V V V V V V V		IF TF RL VY NT	QI KL RP EL RL YI		KE DD YN TD - G DN	LG IK SE KD SD	N S L - G R G N V Q V I		D'	A T 7 T	I E V S L E K E	Y T Y N Y E Y D	E G E D A S E T	Ч А Ч V - А - Р	E (E (A (Q MI Q MI G L G MI	LR LR LR	YS YS SF	AE KD SE LD	YSI YSI R - R -	5 7 6 7 6 7 7 7	58 70 53 69 703

Figure S3. Multiple alignment of DPP III orthologs' sequences. Shown are sequences of *Caldithrix abyssi* (UniProt KB: H1XW48), *Physcomitrella patens* (UniProt KB: A9TLP4), *Porphyromonas gingivalis* (UniProt KB: Q7MX92), *Bacteroides thetaiotaomicron* (UniProt KB: Q8A6N1), *Homo sapiens* (UniProt KB: Q9NY33) and *Saccahromyces cerevisiae* (UniProt KB: Q08225).

Figure S4. Fractional uptake of deuterium in peptides of A) *Bt*DPP III, B) *Pg*DPP III, C) *Pp*DPP III and D) *Ca*DPP III, obtained by pepsin hydrolysis during five exposure periods: 10s-yellow trace, 1 min-red trace, 20 min-light blue trace, 1 hour-dark blue trace and 4 hours-black trace. Values are not corrected for back exchange. For the peptides identification (sequences), see Table S1

Figure S5 Overlay (superposition) of two yDPP III conformers in which peptide VRLKIGFKNVSLGNIL, for which binomial behaviour was found, is less (ochre) and more (yellow) solvent exposed

Figure S6. Graphical presentation of deuterium uptake differences for all peptides monitored in H/D experiments for the enzymes in unliganded and tynorphin complex states. Yellow, green, blue, pink and purple traces correspond to the 10 sec, 1, 10, 60, and 240 minute deuterium incubation time points, light blue dotted lines represent significance threshold limit of ±0.3 Da for each time point value. Difference cumulative value is sum of all time point values for each peptide and plotted as a vertical bar, dashed red lines denote significance threshold limit of ±1.3 Da for those values. A) H/D data difference plot for comparing unlinganded vs. tynorphin complex of human DPP III enzyme. B) H/D data difference plot for comparing unlinganded vs. tynorphin complex of DPP III enzyme from *Saccharomyces cerevisiae*. C) H/D data difference plot for comparing unlinganded vs. tynorphin complex of DPP III enzyme from *Saccharomyces cerevisiae*. C) H/D data difference plot for comparing unlinganded vs. tynorphin complex of DPP III enzyme from *Saccharomyces cerevisiae*. C) H/D data difference plot for comparing unlinganded vs. tynorphin complex of DPP III enzyme from *Saccharomyces cerevisiae*. C) H/D data difference plot for comparing unlinganded vs. tynorphin complex of DPP III enzyme from *Bacteroides thetaiotaomicron*. D) H/D data difference plot for comparing unlinganded vs. tynorphin complex of DPP III enzyme from *Caldithrix abyssi*. For the labeled peptides identification (sequences) see Table S1.

c)

Figure S7. Top - changes of selected distances between substrate-protein hydrogen bond donor and acceptor atoms during MD simulations. Corresponding distances are show in Fig.5 by black dashed lines.

Bottom the overlay of tynorphin in the structures of the DPP III - tynorphin complexes obtained by MD simulation (initial – violet and final – the atom coded colors).

b)

Figure S8 Top - the RMSD profile for the tynorphin backbone atoms during MD simulations of the yeast DPP III - tynorphin complex.

Middle – the overlay of the tynorphin in the yeast DPP III - tynorphin complexes sampled at 5ns (yellow), 50ns (blue) and 100ns (green) of MD simulations. Position of the ligand relative to the β -strand is given.

Bottom – Enzyme conformational change during 100 ns of MD simulation of free yeast DPP III and its complex with tynorphin, described by:(left) changes of distance between alpha carbons of residues from the "upper" and "lower" domain at the edge of the inter-domain cleft (Ser647 and Ala195, respectively) and (right) angle between residues at the inter-domain cleft edge and hinge (Ser647, Ala195 and Leu418, respectively).

Figure S9. Tynorphin bound into the *Bt*DPP III active site as determined by molecular modeling (docking combined with MD simulations). Tynorphin and the selected amino acid residues from the enzyme active site are given in stick representation (coloured yellow and green, respectively) and the rest of the enzyme is shown as ribbon.

Figure S10. TOP - Alignment of the *Bt*DPP III structures, experimental, the open one (PDB code 5NA7; green), and those obtained by MD simulations of the ligand free protein (cyan) and its complex with tynorphin obtained after 100 ns of MD simulations (red). Loop described by peptide 26 is shown in black

ellipse. Ligand-free protein structure obtained by MD simulations (cyan) corresponds to the most closed MD structure, achieved with aMD calculations using the ff14SB force field. We used this particular structure to illustrate that p26 loop never, regardless of the degree of the protein (*Bt*DPP III) closure, undergoes translocation noticed in the complex with tynorphin.

BOTTOM - RMSD of the loop during MD simulation of the *Bt*DPP III – tynorphin complex. The plot clearly indicates that loop changed its position after about 20 ns of the simulation.

Figure S11. Tynorphin bound into the *Pg*DPP III active site as determined by molecular modeling (docking combined with MD simulations). Tynorphin and the selected amino acid residues from the enzyme active site are given in stick representation (coloured yellow and green, respectively) and the rest of the enzyme is shown as ribbon.

Figure S12. Tynorphin bound into the *Pp*DPP III active site as determined by molecular modeling. Tynorphin and the selected amino acid residues from the enzyme active site are given in stick representation (colored yellow and green, respectively) and the rest of the enzyme is shown as ribbon.

Table S1. Peptic peptides from all six DPP III orthologs analyzed for H/D exchange kinetics. Peptide numbers are related to their sequences and position in the primary structure of the enzyme.

Table S2. Percent of amino acid identity matrix											
hDPPIII vDPPIII	100 36.4	36.4 100	23.95 21 77	23.65 22.69	19.52 17 41	22.72 19 33					
BtDPPIII	23.95	21.77	100	49.92	22.89	22.31					
PgDPPIII PpDPPIII	23.65 19.52	22.69 17.41	49.92 22.89	100 20.34	20.34 100	22.09 42.21					
CaDPPIII	22.72	19.33	22.31	22.09	42.21	100					

Table S3. Mean number of amide H-bonds per residue in selected peptides in different hDPP III structures. Peptides with higher deuterium uptake in complex than in ligand free enzyme are given in red, and for those with lower deuterium uptake in complex than in free enzyme are given in blue.

Peptide	Open hDPP III	Closed hDPP III	Closed hDPP III –
			tynorphin
Pep2 [18-32]	0.533	0.333	0.933
Pep13 [132-143]	1.000	1.000	0.667
Pep28 [263-280]	0.611	0.889	0.556
Pep29 [281-299]	1.368	1.105	1.474
Pep34 [331-343]	1.154	0.769	1.077
Pep38 [379-398]	0.600	0.800	1.050
Pep39 [392-398]	0.571	0.571	1.000
Pep40 [399-413]	0.867	0.933	1.000
Pep55 [526-534]	0.778	0.333	0.333
Pep56 [526-537]	0.917	0.333	0.333
Pep62 [563-569]	0.571	0.857	1.000
Pep64 [586-601]	0.750	0.750	0.813
Pep75 [697-711]	0.800	0.600	1.067

Table S4. Amino acid residues from DPP III orthologs interacting with tynorphin residues electrostatically during MD simulations. In some cases these interactions satisfy criteria for hydrogen bond interaction. The residues for which these criteria were satisfied for at least 1% of the simulation time are outlined. The amino acid residues that belong to peptides for which changes in deuterium uptake upon tynorphin binding were determined are represented by bold letters.

Complex	S ₂ (NH3-Val)	S ₁ (Val)	S ₁ ' (Tyr)	S ₂ ' (Pro)	S₃' (Trp-COOH)
hDPP III	Glu316 ¹ 94%	Glu316 ¹ 67%	Pro387	Phe109	lle386 26 %
	Tyr318 ¹	Tyr318 ¹	Ala388 ² 83%	Pro387	Pro387 5%
	Gly389 ²	Pro387	Gly389 ² 68%	Ala388 ²	Ala388 ²
	Ile390 ²	Gly389 ²	lle390 ²	Phe443 ³	Val412 ⁶ 22%

	Asn391 ²	44%	Ile390 ²		Phe443 ³		Gln566		Ala416	
	Ile392 ²		Ser442 ³		Gln446 ³		His568 ^{5,8}	3	Phe443 ³	
	Asn394	81%	Glu508		Val447 ³		Arg572	14 %	Arg669 ⁷	125%
	Arg399 ⁹		His568 ^{5,8}	2%	His450 ⁴		Arg669		Lys670 ⁷	
	His455 ⁴		Met547		Glu508 ⁴				lle672	
	Glu508				Glu512 ⁴	89%				
					His568 ^{5,8}	}				
					Arg572	1.8%				
yDPP III	lle324		Phe104		Phe104		Gln576⁵	2%	Gly394 ²	6%
	Glu325 ¹	4%	Glu325 ¹	1%	Pro396		His578⁵		lle395	35%
	Tyr327 ¹	1%	Tyr327 ¹		Ala397 ²		Met579	5	Pro396	
	Gly398 ²		Gly394 ²		Gly398 ²	81%	Arg674 ⁷		Ala397 ²	
	Ile399 ²		Gly398 ²		Leu422				lle421 ⁶	
	Asn400 ²	100%	Asn400 ²		Phe453 ³				Ala425	
	lle401 ²	2%	Ile401 ²		Val457 ³				Tyr566	
	Asn403	17%	Gln576 ⁵		Gln576 ⁵				Arg674 ⁷	90%
	Arg408 ⁹				His578 ⁵	6%			Arg675 ⁷	
	Gln576⁵				Arg674				Phe677	
PgDPP III	Glu299	44%	Thr290 ¹		Ser456	1%	Glu514⁵	1%	His105	1%
	Glu304	26%	Glu299	26%	Gu515⁵	11%	Gu515⁵		Tyr106	7%
	Asp359	44%	Val292 ¹	1%	Ala516 ⁵		Ala516 ⁵		Asp359	
	Ser360	27%	Tyr293 ¹	1%					Pro362	
	Pro365	1%							Ala363	
	Gly367 ²								Arg506 ⁸	57%
									Lys508	40%
	lle368 ²								Glu514 ⁵	2%
	Asn369 ²								Glu515⁵	5%
									Tyr69	2%
									Lys612	
BtDPP III	Asn385 ²		lle382 ²		lle382 ²	2%	His448	1%	Tyr120	
	Arg393 ⁹	1%	Gly383 ²	5%	Gly383 ²		Glu476 ⁴		Ala379	
	Ser398		lle384 ²	1%	Thr402	2%	His533⁵	7%	Thr380	1%
	Ser400	3%	Asn385 ²	1%	Thr407		Asn536	20%	Ala381	2%
	His453		Arg393		Tyr410		Arg537	5%	lle382 ²	3%
	Ser472 ⁹	6%	Ser400	1%	Gly441				Gly383 ²	
	Glu476 ⁴	1%	Thr402	1%	His444	6%			Tyr410	7%
	Ala532	1%	His533 ⁵	5%	Thr445	24%			Asn49	1%
	His533 ⁵	1%			His448				Asn514	1%
					Glu449				Gln519	14%
					His533 ⁵				Arg522	87%
					Arg537	34%			lle523	
									Glu531 ⁵	
									His533 ⁵	33%
									Met534 ⁵	1%
									Arg537	30%
									Tyr627 ⁷	

									Lys628 ⁷	1%
									Phe630	
CaDPP III	Glu240 ¹	97%	Glu240 ¹	69%	Thr317	1%	Tyr242 ¹	2%	Leu113	5%
	Tyr242 ¹	5%	Tyr242 ¹	5%	Leu318	70%	Val315 ²	4%	Gly314	2%
	Asn321 ²	35%	Val315 ²	1%	Ala319 ²	43%	Thr317	1%	Val315 ²	
									21%	
	Leu322 ²		Thr317	5%	His375	9%	Leu318		Gln316	21%
	Asn324 ²	3%	Phe320	3%	Thr376		His460 ⁵	7%	Leu318 ²	1%
	Arg329 ⁹		Asn321 ²	6%	Glu380	2%			Lys346	
	His383 ⁴	1%			Asp416	77%			Arg450	149%
	Tyr407				Phe444				Thr451	96%
	Lys400	2%			His460⁵	3%			Arg453	2%
	Glu411 ⁴	2%							Phe454	2%
									Glu458⁵	
									His460⁵	91%

¹is related to the region highly conserved among the studied orthologs.

³¹³ GFIESYRDP	human
³²² GFIETYREP	yeast
³⁰⁴ GFTESYGDP	B. thetaiotaomicron
²⁸⁸ GFTEVYADP	P. gingivalis
²³⁷ GPYEVYEDK	C. abyssi

² is related to the region highly conserved among the studied orthologs.

388AGINIPN	human
------------	-------

-	
³⁹⁷ AGINIPN	yeast

³⁸² IGINLPN
 ³⁶⁶IGINLPN
 ³¹⁸LAFNLPN
 C. abyssi

³conserved in human and yeast

⁴The conserved signatures HEL(C)LGH and EECR(K)AE(D). In CaDPP III instead of hexapeptide HEL(C)LGH there is pentapeptide HEISHG

⁵ related to the conserved region:

564WRQAHMQ	human
⁵⁷⁴ WGQP H MQ	yeast
⁵²⁹ IEEAHMR	B. thetaiotaomicron
⁵¹³ IEEA H MR	P. gingivalis
456IEENHGA	C. abyssi

It should be noted that **H** is conserved in all orthologs, while IEE(N)A**H** in the bacterial ones (B. thetaiotaomicron, P. gingivalis and in C. abyssi (INEAH).

⁶V in human and in other orthologs

⁷RK in human, RR in yeast and YK in *Bt* and *Pg*

⁸Conserved in the bacterial orthologs

⁹Conserved in all orthologs

Table S5. Number of hydrogen bonds per amino acid for the selected peptides in the open and closed ligand-free *Ca*DPP III structures as and its complex with tynorphin. Residues which experience the increase of deuterium uptake in the *Ca*DPP III – tynorphin complex are shown in bold face representation. The number in parentheses denotes number of amino acid residues in peptide.

Peptide	Open <i>Ca</i> DPP III	Closed CaDPP III	Closed <i>Ca</i> DPP III – typorphin complex
11 (12)	0.583	0.500	1.166
39 (13)	0.846	0.846	0.308
40 (9)	0.778	0.444	0.444
44 (12)	1.083	0.917	0.833
46 (8)	1.000	1.000	1.000
50 (14)	0.571	0.714	0.642
51 (20)	0.850	0.850	0.700
52 (14)	1.000	0.929	0.643
54 (5)	1.6	0.200	0.600
55 (17)	0.882	0.353	0.470
58 (8)	0.500	0.375	0.125
61 (6)	0.833	0.833	0.667